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FOREWORD

The 25th Conference on the Design of Experiments in Army Research,
Development and Testing (DUE) was held 17-19 October 1979 at the

U. S. Army Natick Research and Development Command in Natick,
Massachusetts. This was the second time in the history of these
conferences that this Army base has provided the facllities to conduct
one of these scientific meetings. The fourth conference In the series
was held here. At that time, the base was called the Quartermaster

Research and\Englneerlng Center.

The original format for the DOE Conferences, which are under the
auspices of the Army Mathematics Steering Committee {AMSC), was outllined
by the eminent statisticlan, Professpr Samuel S. Wilks, who served as
conference chalrman until his death, Through these symposia the

AMSC hopes to itntroduce and encourage the use of the latest statistical
and design techniques Into the research, development and testing
conducted by the Army's sclentific and engineering personnel. It is
believed that this purpose can be best pursued by holding these meetings

at varlous government installations throughout the country, .

Several features in this year's agenda pointed out the special
significance of this, the Silver Anniversary of these meetings. The
program was dedicated to Dr. Francls G. Dressel, formerly Professor
of Mathematics at Duke University. For the past 25 years Dr. Dressel

has coordinated the conference programming and local arrangements,
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and has edited proceedings of this and other AMSC sponsored conferences.
The DOE Program Committee Invited Dr. Dressel's friends to Join In

expressing thelr appreciation for this loyal service.
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The Program was to begin with an address by Dr. Frank E. Grubbs,

formerly of the U, S. Army Ballistic Research Laboratory, and a

renowned statistician, His talk was entitled, '"'A Quarter Century

of Army Deslgn of Experiments Conferences''. This was to be followed

by an address entitled, '‘Summarizing the Results of a Series of °

Experiments'! to be glven by Dr. Willlam G. Cochran, Professor of

Statistics Emeritus, Harvard University. Unfortunately, both of
these gentlemen were unable to attend the conference. Thelr f.
addresses were read, respectively, by Dr. Dressel and Dr. Herman
Chernoff, Professor of Mathematics at the Massachusetts Institute _ f é
of Technology. (Dr. Grubbs was also unable to serve as Master of |
Ceremonies at the banquet and to make the presentation of the Samuel
S. Wilks Memorial Medal, These dutlies were taken over by Dr. Robert
Launer of the Army Research Office.) The other invited speakers

and trelr toplcs are noted below.

Speaker and Affl!iation Title of Address )
i Mr. Al L. May DESIGNED EXPERIMENTS 1IN SENSORY i
y Pt1lisbury Research Labs TESTING ?
( Dr. Ray E. Schafer COMPUTER AIDED HYPOTHES!S TFSTS - ;
Hughes Alrcraft Company THE BIRNBAUM TEST !

H
i
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1
1
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S : Professor Warren Stewart NEW ALGORITHMS FOR NONLINEAR LEAST
4 : Mathematics Research Center SQUARES AND BAYESIAN PARAMETER
‘j ¢ and University of Wisconsin ESTIMATION
4 % '
4 W ‘ Professor Marvin Zelen ETHICS AND STRATEGY IN THERAPEUTIC
o i Harvard School of Public INVESTIGATIONS
b b Sclences
' @
‘ﬁ g The members of the AMSC take this opportunity to express their thanks
_E f to the speakers and other research workers who participated in the

fﬁ : meetlng{ to Colonel H. F. Penny, Commanding Offlcer of the U. S. Army
? : Natick Research and Development Command, for making available the

| P ' excellent facilitles of his organization for the conference; and

ﬁ? ! to Mr. Donald Kass who so ably handled the details of the local

arrangements for this meeting. The AMSC Is making available most of

i : the papers presented at this meeting in the present form in order

b ; to encourage wider use of modern statistical principles of the design

of experiments In research, development and testing work of concern

to the Army,
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THE TWENTY-FIFTH ANN!VERSARY OF
THE CONFERENCES ON
THE DESIGN OF EXPERIMENTS IN
ARMY RESEARCH, DEVELOPMENT AND TESTING

THIS PAMPHLET CONTAINS THE NAMES OF INVITED SPEAKERS
SELECTED FROM THE PROGRAMS OF

THE FIRST TWENTY-FIVE MEETINGS IN THIS SERIES

FOLLONED BY A LIST OF

RECIPIENTS OF THE WILKS MEMORIAL AWARD

These Conferences Are Sponsored By
The Army Mathematics Steering Committee

U. S. Army Research Office
Research Triangle Park, North Carolina
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CONFERENCES ON THE DESIGN OF EXPERIMENTS IN
ARMY RESEARCH, DEVELOPMENT AND TESTING

List of Invited Speakers at
the First Twenty-Five Meetings

First Conference: 19-21 October 1955, Diamond Ordnance Fuze
Laboratory and Natfona) Bureau of Standards
Professor W. G, Cochran
THE PHILOSOPHY UNDERLYING THE DESIGN OF EXPERIMENTS

Dr. Churchill Eisenhart
THE PRINCIPLE OF RANDOMIZATION 1IN THE DESIGN OF EXPERIMENTS

Or. M. E. Terry
FINDING OPTIMUM CONDITIONS BY EXPERIMENTATION

Professor John Tukey (Chairman)

PANEL DISCUSSTON ON HOW AND WHERE DO STATISTICIANS FIT

IN, (THE OTHERS ON THIS PANEL WERE: MR, LUTHBERT DANIEL,
MS. BESSE DAY, DR, CHURCHILL EISENHART, vn. . E. TERRY,

AND PROFESSOR S. S, WILKS).

Dr. W. J. Youden

DESIGN OF EXPERIMENTS IN INDUSTRIAL RESEARCH AND DEVELOPMENT

Second Conference: 17-19 October 1956, Dfamond Ordnance Fuze
Laboratory and the National Bureau of Standards

Or. C. A. Bennett
THE PREDESIGN PHASE OF LARGE SAMPLE EXPERTMENTS

Professor R, A, Bradley
RECENT KESEARCH TN STATISTICAL PROBLEMS IN SUBJECTIVE TESTING

Professor B, G. Greenberg
APPLICATION OF ORDER STATISTICS TN MEDICAL EXPERIMENTS

Professor G, E. Nicholson, Jr,
THE PLANNING OF EXPERIMENTS 1IN THE PRESENCE OF VARIATION

Dr. M, B, WK
DERIVED LINEAR MODELS IN THE ANALYSIS OF VARIANCE
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f#' : ) Dr. Jerome Cornfield
'E : ‘ CHOICE OF ERROR IN THE DUSIGN OF EXPERTMENTS

fi . Third Conference: 16-18 October 1957, Ciamond Ordnance Fuze Laboratory
8 and the National Buresu of Standards

g Professor Benjamin Epstein

b LIFE TESTING

i _ Sir K. A. Fisher

o PRACTICAL PROBLEMS IN EXPERIMENTAL DESIGN

;?' Professor H. 0. Hartley
., CHANGES IN THE OUTLOOK OF STATISTICS BROUGHT ABOUT BY MODERN
COMPUTERS

2
- , Dr. A. W. Marshall
EXPERTMENTATION BY SIMULATION AND MONTE CARLD

1 '
* Fourth Conference: 22-24 October 1968, The Quartermaster Resedrch
‘ and Enginaeering Centar, Natick

¥,
d

- Mr. C. 1. Bliss
[ ’ SOME STATISTICAL ASPECTS OF PREFERENCE STUDIES

E? Professor A. C. Cohen

 %‘ : SIMPLIFTED COMPUTATIONAL PROCEDURES FOR ESTTMATING PARAMETERS
B OF A NORMAL DISTRIBUTTON FROM RESTRICTED SAMPLES

b Dr. A. W. Kinball
ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING

A : Professor C. F. Kossack ]
; THE AASHO ROAD TEST AS AN EXAMPLE OF LARGE SCALE TESTS f

ff Mr. L. W. C. Tippett
A STATISTICAL METHODS APPLIED TO THE TEXTILE INDUSTRY
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Fifth Conference: 4-6 November 1959, The U. S. Arm{ Bioiogical
— Warfare Laboratories, Ft, Detric

el

DPr. Joseph Berkson :
THE MEASURE OF DEATH |

Or. H. A. David
THE METHOD OF PATRED COMPARTSONS

Dr. D. B. Detury
SAMPLING 1IN BICLOGICAL POPULATIONS

e

T T e

Dr. W. J, Dixon :
MEDICAL HEALTH STATISTICS X

Dr. N. E. Golovin
E PREDICTION OF THE RELIABILITY OF COMPLEX SYSTEMS A

Dr, Richard Weiss

THE ARMY RESEARCH AND DEVELOPMENT PROGRAM AS IT RELATES TO
' THE CIVIL ECONOMY

S i nyE T e

|
b

Sixth Conference: 19-21 October 1960, The Ball{stic Research
o Laboratory

Dr. Jarws R, Duffett
RELTIABILITY

Professor F. J. Anscombe _
EXAMINATION OF RESIDUALS p

Dr. W. 5. Connor
DEVELOPMENTS IN THE DESIGN OF EXPERIMENTS

; br. J. E. Jackson :

NULTTVARTATE ANALYSIS I1LLUSTRATED BY NIKE-HERCULES: |
: 1.  SEPARATION OF PRODUCT AND MEASUREMENT VARTABILITY :
11, ACCEPTANCE SAMPLING [l )

Professor G. E. P. Box (Chatrman)
PANEL DISCUSSTION ON COMMON PITFALLS IN THE DESION OF

EXPERIMENTS. (OTHERS ON THE PANEL WERE MR. CUTHBERT DANIEL,
OR. J. S. HUNTER, DR. ¥, J, YOUDEN AND UR. MARVIN ZELEN),




Seventh Confercnce: 18-20 Uctober 1961, U. §. Signal Research
and Development Laboratory, Ft. Monmouth

Dr. G. A, Watterson
TIME SERIES AND SPECTRAL ANALYSIS

Dr. J. M. Hammarsley
MONTE CARL? METH0DS

Dr, R. L. Anderson
DESIGNS FOR ESTIMATING VARTANCE COMPONENTS

Dr. G. §. Watson
HAZARD ANALYS1S

Professor Robart M. Thrall (Chairman)

PANEL DISCUSSION ON STIMULATION. (OTHERS ON THE PANEL WERE

COL. A, W, DEQUOY, DR, JOHN HAMMERSLEY, MR, JOHN H. HOSS AND
DR, GUSTAVE ROBSON).
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Efghth Conference: 24-26 October 1962, Walter Reed Army Institute 3
of Research :

o= ]

Professor Egon S. Pearson

A STATISTICTAN'S PLACE IN ASSESSING THE LIKELY OPERATIONAL :
PERFORMANCE OF ARMY WEAPONS AND EQUIPMENT

Dr. Marvin A, Schneiderman
A GENVERAL SURVEY OF SCREENING THEORY

Professor Herman Chernoff ' A
OPTIMAL DESIGN EXPERIMENTS

Dr. R. P. Abslson
AN EXPERIMENTAL DESIGN FOR DECISIONS UNDER UNCERTAINTY :
Dr. H. C. Batson h
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) Dr. Heold F. Dorn (Chatrman) ;
PANEL DISCUSSION ON DIET AND WEART DISEASE. (OTHERS ON :
. THE PANEL WERE M. JEROME CORNFIELD, AND DR, GEORGE V. MANNI.
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Ninth Conference: 23-25 October 1983, U, S. Army Missile

Command

Professor Solomon Kullback
COMMUNTCATION THEORY

Professor Frank Proschan
THE CONCEPT OF MONOTONE HAZARD RATE IN SYSTEMS REALIABTLITY

Dr. Churchi1) Eisenhart
REALISTIC EVALUATION OF THE PRECISION AND ACCURACY OF
INSTRUMENT CALTBRATION SYSTEMS

Frofessor H, 0. Hartley
NOMLINEAR ESTIMATION

Professor D, B. Duncan

ON THE SIMULTANEOUS ESTIMATION OF A MISSTILE TRAJECTORY
AND THE ERROR VARTANCE COMPONENTS INCLUDING THE ERROR
POWER SPECTRA OF SEVERAL TRACKING SYSTEMS

Professor Boyd Harshbarger (Chairman)

PANE! DISCUSSTON ON WHAT TYPE OF STATISTICIANS ARE NEEDED
IN RESEARCH AND DEVELOPMENT LABORATORIES. |OTHERS ON THE
PANEL WERE DR, E, L. COX, DR. CHURCHILL EISENHART, MR. JOHN
L. MCOANTEL. DR. PAUL R. RIDER, DR. WILLTAM WOLMAN AND

DR. DONALD A GARDINER).

Tenth Conference: 4-6 November 1964, The Army Research Office,

Washington, DC

MAJ GEN Leslie E. Simon (Ret'd)
THE STTMULUS OF S. S. WILKS TO ARMY STATISTICS

Professor Oscar Kempthorne
VEVELOPMENT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN
y

Professor H. 0. Hartley and Professor A. W. Wortham
ASSESSMENT AND CORRECTION OF DEFICIENCIES IN PERT ANALYSIS
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Dr. Churchill Eisenhart
SAM WILKS AS T REMEMBER HIM

Dr. W. J. Youden
AN OPERATIONS RESEARCH YARN AND OTHER COMMENTS

Professor John W. Tukey
THE FUTURE OF PROCESSES OF DATA ANALYSIS

Dr. M. G. Kendall
STATISTICS AND MANAGEMENT

Professor Gerald J. Lieberman (Chai.rman)

PANE! DISCUSSION ON REGRESSION ANALYSIS. (OTHERS ON THE PANEL
WERE PROFESSORS ROBERT BECHHOFER, G. E. P, BOX, JACK C. KIEFER
AND TNGRAM OLKIN) .

Eleventh Conference: 20-22 October 1965, U. S. Amy Munition Command,

Dovar. Held on thn campus of Stevens Institute
of Technology in Hoboken, New Jersey

Dr. Joan R. Rosenblatt
CONFIDENCE LIMITS FOR THE REALIABILITY OF COMPLEX SVSTEMS

Professor J. Stuart Hunter
NONLINEAR MODELS: ESTIMATION AND DESIGN

Professor Willlam C. Guenther
TARGET COVERAGE PROBLEMS

‘.

Professor H. 0. Hartley

MAXTMUM LIKELTHOOD ESTIMATES FOR THE GENERAL MIXED ANALVSB OF
VARTANCE MODEL

Professor R. €. Bechhofer

PANEL PISCUSSION ON SELECTING THE BEST TREATMENT. (THE OTHER
PANEL MEMBER WAS PROFESSOR SHANTY S. GUPTAI.
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"B Twelfth Conference: 19-21 Cctober 1966, Harry Diamond Labs L
i T and the Natfonal Buresu of Standards S
4 i
B . Professor Brian ¥, Conolly .
- OPERATIONS RESEARCH 1A
Dr. John Mande) 3
"f.‘,' STATISTICS AS A DIAGNOSTIC TOOL IN DATA ANALYSIS
g Profassor W. G, Cochran 5
g PLANNING AND ANALYSTS OF OBSERVATTONAL STUDIES !
Professor Norman L. Johnson
4 SAPLE CENSORING 4
% Thirteenth Confergnce: 1-3 November 1967, The U. S, Army Mobility
= Equipment Development Center and the U. S.
P Army Engineer Topographic Laboratories
g ! Professor Francis J. Anscombe .
k! REGRESSTON ANALYSIS : 1
, i Professor K. A. Brownlee ]
] : SOME COMMENTS ON HATCHING ‘:
R Professor 1. ), Good ;
L‘ SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE RESEARCH . |
% Dr. Frank Proschan ]
H MAXTMUM LTKELIHOOD ESTIMATION OF RELIABILITY :
Dr. M. B. Wk
" DATA ANALYSIS }
: Fourteengh Conference: 23-25 October 1968, U. S. Army Edgawood
' Arsem
LY GEN Nill{am B. Bunker
BROADENING THE HORIZONS OF EXPERIMENTAL DESIGN
' Prafessor Rolf E. Bargmann ’
; STRUCTURE AND CLASSIFICATION OF PATTERNS f
b
1
g . xvi
{
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: Professor Acheson J. Duncan
E y BULK SAHPLING ' it

- B ' Professor Emanuel Parzen

B TIME SERIES

: Dr. Walter D. Foster (Chairman)

] PANEL DISCUSSTON ON BULK SAMPLING, {OTHERS ON THE PAVEL

P : WERE PROFESSORS ACHESON J. DUNCAN AND BOYD HARSHBARGER AND

h : MESSRS, HENRY ELLNER, GENE RAY LOWRIMORE, JOSEPH MANDELSON

| AND VERNON H. RECHMEVER).

¥ Fifteanth Conference: 22-24 October 1969, U. S. Ammy Missile |
g Command : '
pr. John E. Condon

RELIABILITY AND QUALITY ASSURANCE

3 Dr. Nancy R. Mann

b SYSTEMS RELIABILITY
§ _ Dr. Cl4fford J, Maloney

b A PROBABILITY APPROACH TO CATASTROPHIC THREAT

4 ; Professor Richard G, Krutchkoff

45 THE EMPIRICAL BAYES APPROACK TO THE DESIGN AND ANALYSIS OF

3 EXPERIMENTS

l Dr. S. C. Saunders

‘j»_ll ON CONFIDENCE LIMITS FOR THE PERFORMANCE OF A SYSTEM UHEN

k- FEW FATLURES ARE ENCOUNTERED

b

,' Sixteenth Conference: 21-23 October 1970, U. S. Amy Logistics

Managemsnt Center
g Professor Solomon Kullback

i . MINIMUM DISCRIMINATION INFORMATION ESTIMATION AND APPLICATION
" Or. Richard J. Kaplan

- FIELD TESTING

8
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Profassor Gary G. Koch

THE ANALYSIS OF COMPLEX CONTINGENCY TABLE DATA FROM GENERAL
EXPERTMENTAL DESTGNS AND SAMPLE SURVEYS

Professor A, Clifford Cohen

ESTIMATION IN TRUNCATED POISSON DISTRIBUTTONS WITH CONCOMITANT
INTERVALS AND TRUNCATION POINTS

Professor Dana Quade
NONPARAMETRYC ANALYSIS OF COVARTANCE

Sevgnteenth Conferance: 27-29 October 1971, Walter Reed Army
Institute of Research

Profassor Marvin Zelen .
THE ROLE OF MATHEMATICAL SCTENCES IN BIOMEDICAL RESEARCH

Professor Sernard G, Graenberg
RANDOMIZED RESPONSE: A NEW SURVEY TOOL Y0 COLLECT DATA OF A
PERSONAL NATURE

Dr. Geoffrey H. Ball .
CLASSTFICATION AND CLUSTERING TECHNIQUES IN DATA ANALYSIS

Professor K. 5. Banerjee
HOTELLING'S WEIGHING DESIGNS

Dr. John J. Gart ‘

THE COMPARISON OF PROPORTTONS: A REVIEW OF SIGNIFICANCE TESTS,
CONFIDENCE INTERVALS AND ADJISTMENTS FOR STRATIFICATION

Eighteenth Conferance: 25-27 October 1972, U. S, Army Test
and Evaluation Command

Professor John Tukey
EXPLORATORY DATA ANALYSIS

Professor G. S. Watson
ORTENTATION ANALYSIS

Professor J. Stuart Hunter
SEQUENTTIAL FACTORIAL ESTIMATION

xviil
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professor G, €. P, Box
FORECASTING AND CONTROL

Professor Raymond H, Myers
DUAL RESPONSE SURFACE ANALYS1S

Nineteenth Conference: 24-26 October 1973, Hudﬂuartors. U, S,
Army Armament Command & U, S. Army Manage-

mant Engineering Traininp Agency

Prafessor Jerome Cornfield

BAVESIAN STATISTICS

professor S. S. Gupta

RANKING AND SELECTION PROCEDURES FUR MULTIVARIATE NORMAL
POPULATIONS

Profassaor H. L. Gray
GENERALTZED JACKKNIFE TECHNIQUES

Professor Frank Proschan
RELIABILITY GROWTH

Professor S. C. Saunders
ACCELERATED LIFE TESTING

Professor W. A. Thompson, Jor.
RELIABILITY OF MULTIPLE COMPONENT SYSTEMS

Twentieth Conference: 23.26 Octobar 1974, U. S, Army Oparational
dU. 5. Ay

Test & Evaluation Agency an U. S.
Engineer Center at Ft. Belvoir

Or. Churchill Efsennart
SAMUEL S. WILKS AND THE ARMY DESTGN CONFERENCES

Profassor Solomon Kullback
MULTTOTMENSTONAL CONTINGENCY TABLES
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| Professor Herbert Solomon :
f MULTTVARIANT DATA ANALYSIS P

Professor H, A, David
ORDER STATISTICS

Professor Gerald Lieberman
RELIABILITY

%; Profassor Robart Bechhofer .
o RANKING AND SELECTION PROCEDURES

, Ors. Marion R, Bryson and William Malldes
b MAXIMUM INFORMATION FROM EXPERIMENTS

e meacrh
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p f Twanty-First Conference: 22-24 Octobar 1975, Walter Reed Army
f.’ ; Med{cal Centar and the Armed Forces
Institute of Pathology

!
{ Professor Frederick Mosteller
? ‘ SUCCESS IN SOCTAL AND MEPICAL EXPERTMENTATION

Professor Edmund A, Gehan
NONRANDOMIZED CLINICAL TRIALS

Profassor Paul Meler
RANDOMIZED CLINICAL TRIALS

Professor Seymour Geisser
PREDICTIVE SAMPLE REUSE

L Professor Edmond Murphy
NORMALITY AND DISEASE

e T gl s it i JA
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Twanty-Second Confgrence: 20-22 October 1976, Harry Diamond Labs,
Adelphi, Maryland

Professor J. Stuart Hunter
THE MEASUREMENT PROCESS




2o LS N

Professor Benjamin S. Blanchard
MANAGEMENT OF RELIABILITY

Dr. Carl N. Morris .
STEIN'S ESTIMATOR, ITS GENERALIZATIONS AND 1TS APPLICATIONS

Professor Robert V. Hogg
ON ROBUST STATISTICAL PROCEDURES

Profassor Nozer D. Singpurwalla
ACCELERATED LIFE TESTING

T R o o e 3
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Twenty=Thir ference: 19-21 October 1977, U, S. Army Combat
) Dsvelopmeants Experimentation Command. Held
; . at the Naval Postgraduate School, Monterey,
, California

-
s

T S A" R e T S S

Professor G. E. P, Box
TIME SERTES MODELING

Professor Norman Breslow
CENSORED DATA

Professor Donald P. Gaver
MODELING AND ESTIMATION OF COMPLEX SVSTEM AVAILABILITY

Professor H., 0. Hartley (Keynote)
ANALYSIS OF UNBALANCED EXPERIMENTS

Professor Rupert Miller
THE JACKKNIFE: SURVEY AND APPLICATIONS

Iwsnty-Fourth Conference: 2-6 October 1978, Mathematics Resedrch
Centar, University of Wisconsin-Madison

: 5 Professor Ralph Bradley
Al g SOME APPROACHES TO STATISTICAL ANALYSIS OF WEATWER MODIFICATION

PP




~ :l
|
)1( : Mr. Bernard Davis (for Professor Richard E. Barlow)
£ ' RECENT ADVANCES IN GRAPHICAL TECHNTQUES FOR ANALYZING
E ! FATLURE DATA
:1 j Professor Norman Draper (Keynote)

o RIDGE REGRESSTON
} Professor Brian Joiner
STATISTICAL CONSULTING
E| Professor Grace Wahba
b DESIGN PROBLEMS IN RECOVERING FUNCTIONS OF TWO OR SEVERAL
i VARTABLES
@ Twenty-Fifth Conference: 17-19 October 1979, U. S, Army Natick {
¥ Research and Davelopment Command .
) Professor William G. Cochran (Keynote)

‘Qﬁ SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS ;
Dr. Frank E. Grubbs
S A QUARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES
1 ; Mr. AY L. May ]
-g j DESIGNED EXPERIMENTS IN SENSORY TESTING $i
i ! Or. Ray E. Schafer :
, COMPUTER ATOED HYPOTHESIS TESTS - THE RIRNBAUM TEST i
A ' Professor Warren Stewart :
NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES AND BAVESTAN
3 ‘PARAMETER ESTIMATION

Professor Marvin Zelen
ETHICS AND STRATEGY IN THERAPEUTIC INVESTIGATIONS

xxil




A o e I &

et s

SAMUEL S. WILKS MEMORIAL MEDAL

The Samuel S, Wilks Memoric] Meda) Award, initiated in 1964 by
the U, §. A and American Statistical Associstion Jointly, {s
administared by the American Statistical Association, a non-profit
educational and scientific society founded fn 1839, The Wilks Award
s given aach year to a statistician and s based primarily on his
contributions to the advancement of scientific or technical knowledge
fn Army statistics, ingenious application of such knowledge, or
successful activity in the fostering of cooperative scientific
matters which coincidentally benefit the Army, the Dogartmnnt of
Defense, the U. S. Government, and our country generally.

The Award consists of a medal, with a profile of Professor Wilks
and the nams of the Award on one s{de, the sea) of the American
Statistical Association and name of the recipient on the reverse,
and a citation and honorarium related to the magnitude of the Award
funds. The annual Army Design of Experiments Conferences, at which
the Award {s given each year, are sponsored by the Army Mathematics
Stearing Conmittes on behalf of the Office of the Chief of Research
and Development, Department of the Arny.

The funds for the S. $. Wilks Memorial Award were donated by
Phi1ip G. Rust, retired industrialist, Thomasville, Georgla.

RECIPIENTS OF THIS AWARD

NAME DESIGN CONFERENC d r) PRESENTED
Oa, Frank E, Grubbs Tenth (1944)
Ballistie Research Laboratory

Profesdon John Tukey Eleventh (19¢5)
Princeton Universdty

Majon Geneaal Lestie E. Simon Twelfth (1966)
United States Aumy (Ret'd)

Prodessor W, 6. Cochuut Thirtenrth (1967)
Harvard Undveraity

Progesson Jerzy Neyman Fourteenth (1968)
Undverddity of Zall{annla-xcahclcu

On, W, 1. Youden Fiéteenth {1949)

National Bureau of Standards (Ret'd)
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Prodeason Geerge W, Snedecor
Towd State Universdty (Ret'd)

Professon R, W, Dodge
Rutgens Unlversity and
Bell Tedephone Laboratorded

Progesson 6, E. P, Box
Undversdty of wisconsdn

Prodesson H. 0. Hantley
Texas ASM Unlversdty

Ma, Cuthbeat Dandel
Constlitant

Pro feason Herbert Svlomon
Stangord Unduersdty

Professon Solomen Kutlback
Geonge Waahington Undversity (Ret'd)

or. Churchitd Elsenhart
Natlonal Bureau of Standards

Profeascn Witliam H, Krushal
Undverddty of Chicago
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sixteenth (19701

Seventeenth (1971 )

gighteenth (1972)
Nineteenth {1978)
Twentieth (1974)
Twenty-Fut (1975)
Twenty-Second {1976)
Twenty-Thiad 11977)

Twenty-Founth (1978)
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AGENDA

THE TWENTY-FIFTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

Host:
Held:

0815-0915
0915-0930

0930-1200

0930-1030

1030-1100

ARMY RESEARCH, DEVELOPMENT AND TESTING
17-19 October 1979

The Natick Research and Development Command

Auditorium, Administration Building, Natick
Research Laboratories, Natick, Massachusetts

wRkakk Yadnesday, 17 Octobar *ikwx
REGISTRATION -- Lobby, Administrution Building

CALLING OF THE CONFERENCE TO ORDER =- Lobby

Donald Kass, Chairman of Local Arrangements, Natick
Research and Development Command

WELCOMING REMARKS

COL Robert J. Cuthbertson, Natick Research and
Development Command

GENERAL SESSION 1

CHAIRMAN - Douglas B. Tang, Chief, Department of Biostatistica/
Applied Mathematics, Walter Reed Army Inatitute of

Research, Washington, DC

Special Silver Anniversary Addrese
A QUARTER CENTURY OF ARMY DESIGN OF EXPYRIMENTS

CONFERENCES

Frank E. Grubbs, Program Committee Chairman, Ballistic
Research Laboratory, Aberdeen Proving Ground, Maryland

BREAK




1100~1290

1200-1330
1330-1500

1500~1530

&

1530-1630

PITER T m e -

S

1830~1930
1930

GENERAL SESSION I (Continued)

KEYNOTE ADDRESS
SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran, Department of Statimtics, Harvard
University, Cambridge, Massachusetts

LUNCH

TECHNICAL SESSION I -~ ROBUSTNESS AND OUTLIERS

CHAIRMAN ~ Francis E. Dressel, Army Research Office,
Research Triangle Park, North Carolina

APPLICATLON OF ROBUST FILTERING AND SMOOTHING TO
TRACKING DATA

William S. Agee and Robert H. Turner, Analysis and
Computation Division, White Sands Missile Range,
New Mexico

ROBUST REGRESSION ANALYSIS IN PREDICTING CERAMIC
STRUCTURAL FAILURE

Donald M. Neal, US Army Materials & Mechanics Research
Center, Watertown, Massachusetts

COMPOUND FREQUENCY DISTRIBUTIONS ‘

Donald W. Rankin, US Army Materiel Test & Evaluation
Directorate, White Sands Migsile Range, New Mexico
BREAK

GENERAL SESSION II

CHAIRMAN - Donald Kase, Natick Research and Development
Command, Natick, Massachusetts

ETHIC3 AND STRATEGY IN THERAPEUTIC INVESTIGATIONS

Marvin Zelen, Department of Statistical Sciences,
Harvard School of Public Sciences, Boston, Massachusetts

SOGIAL HOUR -- Maridon Restaurant

BANQUET -- Maridon Restaurant
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1 0900-1030 TECHNICAL SESSION II -~ STATISTICAL THEORY

ﬁ CHATRMAN - Grady Milier, US Army Materiel Systems ﬁ
- Analysis Activity, Aberdeen Proving Ground,
Maryland

;
u : ON SIMULTANEOUS INFERENCE FOLLOWING A SIGNIFICANT
v ‘KRUSKAL-WALLIS TEST

{ | Andrew P. Soms, Mathematics Research Center, University
i : of Wisconsin~-Madison

: SOME BAYESIAN ALTERNATIVES TO SIGNIFICANCE TESTING %
Thomas Leonard, Mathematics Research Center, Universgity

[}

Qf of Wisconsin-Madison f
153

i VARIANCE REDUCTION IN MONTE CARLO SIMULATION

i,

ﬁ Mark Brown, Florida State University; Herbert Solomon, A
b Stanford University; and Michael A, Stephens, Simon

Fraser University, Burnaby, B.C.

1030-1100 BREAK :
1100-1200 TECHNICAL SESSION II1 -- DATA ANALYSIS |
CHAIRMAN - Carl iates, US Army Concepts Analysis Agency, E

e

SENSITIVITY OF TOLERANCE LIMITS TO SMALL SAMPLE SIZES

James R. Knaub, Jr., US Army Materiel Test and Evaluation
Directorate, White Sands Missile Range, New Mexico

)
g : )
!1 . | Bethesda, Maryland

L

S

THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

;
i Michael Hacskaylo, Night Vision and Electro-Optics
; Laboratory, Ft. Belvoir, Virginia iﬁ
i N
‘\' F
; 1200-1330 LUNCH !.
[»’(‘ ' i
3 1330-1530 GENERAL SESSION ITI
CHAIRMAN ~ Edward Ross, Natick Research and Development i
Command, Natick, Massachusetts 5

DESIGNED EXPERIMENTS IN SENSORY TESTING

] Alfred T. May, Pillsbury Research Labs, Minneapolis,
Minnesota
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i COMPUTER AIDED HYPOTHESIS TESTS - THE BIRBAUM TEST

F; Ray E, Schafer, Hughes Aircraft Company, Fullerton,
! California

1530-1600 BREAK

1600-1700 TECHNICAL SESSION 1V -~ LEAST SQUARES

CHAIRMAN - Maxson Greenland, Chemical Systems Laboratory,
Aberdeen Proving Ground, Maryland

‘ VARIABLE TRANSFORMATIONS IN NONLINEAR LEAST SQUARES
[ PROBLEMS

é_ Aivars Celmins, Ballistic Research Laboratory, Aberdeen
. Proving Ground, Maryland

! ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI SQUARE
S ALGORITHM
]
4

Richard L. Moore, US Army Armament Research and Development
Command, Dover, New Jersey

kkkxk Friday, 19 October #kkik

T
N

CHAIRMAN - William E, Baker, Probability and Statistics
Branch, Ballistic Research Laboratory, Aberdeen

i

i

!

0800-0900 TECHNICAL SESSION V -~ BIOMEDICAL APPLICATIONS 3
. i

1

3

Proving Ground, Maryland

gt =Ry BChip I

ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

il un o i e il

Michael Hacskaylo and Joseph E, Swistak, Night Vision
! and Electro~Optics Laboratory, Ft. Belvoir, Virginia
%

IMAGE INTERPRETATION PERFORMANCE IN FOUR STANDARD TYPES
OF AEROGRAPHIC FILM

:

i

[}

!

1

e {
' Ronald L. Johnson, US Army Mobility Equipment Research i
: and Development Command, Ft. Belvoir, Virginia %
b

1

]

|

i

!

bl

0900-0930 GENERAI. SESSION IV

CHAIRMAN ~ Frank E, Grubbs, Ballistic Research Laboratory,
Aberdeen Proving Ground, Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY
AND STATISTICS

Douglas B. Tang, Chief, Department of Bilostatistics/Applied
Math, Walter Reed Army Institute of Research, Washington, DC

xxvili

e sere

- ——— e o o
SR N Y3 0 R S PPy P




4 q
:

, :
f :
i 0930-1000 BREAK ;
10001100 GENERAL SESSION IV (Continued) :
l i
: NEW ALGORITHMS FOR NON-LINEAR LEAST SQUARES AND BAYESIAN 4
g PARAMETER ESTIMATION ‘ i
i Warren Stewart, Mathematics Research Center, University .
: of Wisconsin-Madison E
!
; 1100 ADJOURN
|
* * * * * * * * * * ;

]

PROGRAM COMMITTEE p

Carl Bates Walter Foster J. Richard Moore 1

George E. P. Box Frank E. Grubbs Douglas Tang
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Larry Crow Donald Kass Malcolm Taylor q
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[ Francis Dressel Robert Launer Michael White
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SPECIAL SILVER ANNIVERSARY ADDRESS: A QUARTER
CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Frank E, Grubbs
Ballistic Resesarch Laboratory, Aberdeen Proving Ground, Maryland

Welcome to the 25th Conferaeance on tha Design of Experiments
in Army Research, Development and Testing. A whole quarter of
a century has passed since Sam Wilks recommended that the Army
start this series of conferences, and what an excellent idea he
had, with all the vision for the future of Army statistics., As
we all know, Wilks was a very remarkable man: a gentlaman, a good
leader, an sutstanding scholar and research statistician, a man
who also had very vital interests in applications, and he liked to
see people work together. Sam travellad much for the Department
of Defense and he consulted widely on all probable areas of sta-
tistical application for the Government. He missed none of these
conferernces, ard we remember him so we}l in his role of selecting
many of the key statisticians in the universities to participate
in these conferences, as we met at the Cosmos Club.in Washington,
and drank and dined with Sam. I think we have a better pay-off
from theye statistical conferences than the other DOD conferaences,
bacause of the close intarface with university stgtisticians, in-
cluding, of course, the eminent statistician who gives the kaynote
address next. To the memory of Sam Wilks we owe so much, and
therefore in 1964 we devoted the Army Design of Experiments Con-
farences to Sam's memory.

This particular conference, the landmark 25th, is. also dedica-
ted to our good friend, fellow mathematician and statistician,

teacher, and axcellent administrator, Dr. Francis G. Dressel. How

would the design of experiments conferances ever have survived if

. ‘. » \ )
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it had not been for Francis ?, who carried always the big part of
the load., I am asking him to make a few remarks next. I am glad
Francis has trained Bob Launer so well tool

Now how in the world did I ever get saddled with a "Special
Silver Anniversary Address", including the fancy titlae that came
from, I might say, a former friend? It is probably because some
of my colleagues saw me enjoying bci&g too much a "free lancer"”
at these conkerencca, 80 thcy thought! I must stretch the exact
title of my talk a bit to cover more statistics. Back in the mid-
Thirties, I was a timid, very illiterate Southerner, trying to eke
out a living by teaching engineering math at (now) Auburn University,
and it became starkly clear that we lowly instructors would hardly
aver be promoted unless we got a Ph D! But it was also made quite
clear to us that getting a Ph D would not make us ; better teacher!
A quick OR study (not so-called then) convinced us that we should

. &8 an outlet,

seek something in applied math, 5 and statistics was the subject to
study, for it was needed and spreading fast too, for example to our
agricultural experiment station_probleml. I had a friend, who go£
a Ph D at Cornell University, and had a good job at our experiment
station, so that he introduced me to the analysis of variance,
which seemed to be a2 misnomer, and he even alarmed me with the
idea of the analysis of covariance! I later heard that Karl Pearson
was the greatest statistician of all, but that one R. A, Fisher was
not sprinklihg holy water on all the things Karl Pearson had done.
My friend wanted to know if I had read any of the reputable jour-
nals on the subject of statistics, and I hadn't, of course. In
fact, in about 1934 a paper by a young genius on the distribution
of quadratic forms in a normal system, with applications to the

analysis of covarianca had appeared in a (strange) journal called
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the Proceedings of the Cambridge Philoscophoical Soclety, written

by our keynota speaker of today. Later, in the early 1940's whan

I had been in uniform at the BRL during World War II, we had trouble
justi!yiné a journal called "Biometrika" at first, and there was no
way the Army would sver approve the Annals of Bugenics in our Li-
brary even if it contained statistical papars!

In any ?vent, back in the mid~ to late 30's it did seem that
statistics would -be a good choice of graduate study with an out-
let. But where in the United States could one study statistics?

He certainly could not do so down South, and in fact there were

only two, or maybe three, places to go for statistics courses - Iowa
State University, the University of Iowa, and perhaps the University
of Michigan. The latter was mostly an acturial school with woli—
known voices such as Menge and Glov’r, with Cecil C. Craig and

Paul Dwyer coming along, and perhaps most intcrosting of all an

; athletic statistician and actuary, Harry Clyde Carver, who would
challenge his graduate students to beat him at any sport of their
own choice. 1If Carver won, thers would be a stiff final exam and
no A's! One had to beat Carver at his own game!

We selected Michigan, for Iowa State University seeamed too
far away, and Alan T, Craig of Iowa was scheduled to give the
basic graduate statistics course at Michigan %n the summer of 1937,
and what a good start to .learn to throw dice, et all That summer,

I tried to learn wha£ a random variable was. I had known Clifford
Coﬁqn for vears back at Aubuzn, and at Michigan, Clifford of all
things, had elected to write his dissertation on the very obscure
subject of truncated sample theoryl But how in the world could
there ever be much interest, let alone wide applications, of such

an odd topic? A colleague, who had treaded this mill before,

assured me that "Clifford Cohen was a very
3
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smart man - he chose a topic no one else would ever work oni"

The advice continued, "Don't ever pick a 'hot' topic, for

a geniua wiil beat you to it, and you'll never get your degree"!
The non-statistical graduate students /igrgsﬁzgm::igzyono studying
statistics, as it was not as important as topology or even dif=-
ferential geometry either, One of them was somewhat friendly
though, and on occasion would drop by our "flat" with his wife.

Hea would pick up and continue my wife's needlspoint with much en-
thusiasm, but didn't care for statistics then, or any part of it}
His name -~ Jimmy Savage (l!). And it goes to show you what can hap-
pen tcat pure, rigorous mathematician, once he is "bitten by the
bug" or otharwise the claver ideas of the Reverand Thomas Bavesl!

It was not easy to to f£ind and settle upon a dissertation topic
without some guidance, but All the professors already had too
many graduate students, and &uy had passed aiong topics to some
they never heard from, so that I had "better look around in the
library". No ons then told me, for example, that concerning trun-
cated sample theory this would develop into the field of order
statistics, and moreover blossom into reliability , life-testing,
et al, and it was in fact many, many years before that daid
occur. You ses, no advice I had been given really sunk in, for
I decided to work on outliars, and the international situation
had gotten so gloomy that writing a dissertation would not be
done vcéy guickly anyway, So, being a reserve officer, I was intro-
to the Army.

The physical and engineering scionces were just beginning to
make some usaes of statistics, although Walter Shewhart had made
applications ot statistical quality control. In 1941 /a§ gé:h:gg?d
of a new book, "An ﬁnginn-rs'l Manual of Statistical Methods" by

one Major Leslie E. Simon, and as I read it and was enlightesned
4

B ez R AT




by tha bock, some correspondence developed, for here was an
authority who had the vision, the wisdom and the courage, of
all things, at the time of a very low cycle on the Bayesian revo-

lution (so that we later kidded Les Simon that he had the unmiti-

R T

gated gall) to publish in the back of his book some IQ Charts to

estimate the fraction of defectives in a lot by using Bayes'

e AT TR

A I equally likely hypothesis! Today, thers seem to be no 1008

i classical statisticians, so that we can chalk up another win for :
& { . K
%i & Les. And this introduced me to tha Army's Ballistic Reseazch

& :
% : Laboratories, on active duty in uniform as a Lieutenant, where

g { thers was never to be an end to all kinds of knotty statistical -
] ‘ problems. ) 4

4 ; As pointed out in Les Simon's book, An Engineers Manual of

) i Statistical Methods, Dr. L. S. Dederick had worked out the prxoba- 3

4 : bility distribution of the sample range (largest minus smallest
¥ f observation) back in 1926, and had partially tabulated its dis-

: tribution, but wouldn't submif it for publication! Sam Wilks had
ou occasion consulted with the person-

nel of the Ballistic Section of BRL at Aberdeen Proving Ground

shots on a target, as from rifie firings, was cften measured by

% on various statistical problems. Also, since the dispersion of
|
£

the "extrema spread", or bivariate range, this little nasty sta-

TR

tistical distribution had eluded statisticians, and Mr, Philip
G. Rust, an industrialist and "rifle accuracy bug", -itnbliahod

by sampling shot patterns che distribution of the extreme spread

Py n e

for small sample sizes. Also, on the train from Washington to
Wilmington, Phil Rust had told Sam Wilks about it and had suggested

that he look into the

® In a panel discussion on Bayesian methods on reliability one tima, I stated that
statistically I was 50% classical, 25% fiducial and 25% Bayesian, but Frank Proschan
promptly branded me as a hermaphrodite.
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theory of the probability distribution of the extreme spread in
order to study its properties, as it was widely used in ballis-
tics and rifle accuracy competititons also.

When I arrived at the BRL at Aberdeen Proving Ground in 1941,
John von Neumann, Robert H, Kent, H. R. Bellinson, and B, I. Hart
nad just worked out and published in the Annals of Mathematical
Statistics the distribution of the mean square successive dl!fo:-.
ence, and the mean square successive difference to the variance,
and B, I. Hart had calculated percentage points of both.

The "real world data", coming out of ballistic testing of all
kinds, often defied any good or "normal" analysis, and were loaded
with outliers! There was thus an applicable dissertation topic!
In the mid Forties, there existed a critical need to do something
about spaeding up the production of firing tables, as about 100
female "computers" were always busy running computations on those
big, heavy desk slectric Friden or Monroe calcuiatorl.

Leslie E, Simon valued braians to solve the Army's problems in
ballistics, and he had eatablished a scientific advisory committee
with some of the best brains in the physical sclences in the
country. What a wonderful and stimulating place to work, less much
time to be in uniform and fight the "battle of Aberdeen"!

Back in the early Thirties, Simon was cnik: of Manufacture
at Picatinny Arsenal, and had cultivated the interest and exper-

tise of Walter Shewhart to apply the principles of statistical
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at Pica}inny Arsenal.
quality control to the manufacture of ammunition’ At the BRL

in World war II, Simon saw the pressing need to pass on the
principles of statistical quality control to industry in the
production of ammunition and weapons for the US Army, and he

also worked with Harold Dodge of the Bell Telephone Laboratories E

to start computations of the standard sgmpling inspection tables
for the Army Ordnance Corps, later put into Military Standard 105A.
Sam Wilks had long been aware of the need for well-designed
experiments and hence suggested that the Army start a series of
annual conferences to promote statistical methods. Sam suggested
that the Design of Experiments Conferences should have three types ;
of sessions: First, there would be some special invited papers
by well-known authorities on the philosophy and general principles
of statistical design of experiments, then there would be some
technical papers presented by Army statisticians, and finally
there would be clinical sessions with suggestions from the experts -
and we s8till stick to this format today. These conferences had
their beginning 19-21 October 1955 at the Liamond Ordnance Fuze
Laboratory and National Bureau of Standards in Washington, D. C.
We note that Sam's conferences were Army Wide, and attracted DOD
interest, while a conference the Ballistic Research lLaboratories
put on a year earlier (1954) on the use of statistical methods
was primarily for Army Ordnance pe:lonnalq

Within drdnance and the Army, Leslie E. Simon certainly was .

the great stimulus to the advancement of statistical methods, for




at the BRL Les was not only its Director, but he also prepared E
a large number of papers on engineering statistics or statistical

8
3
engineering -~ what ever you want to call it. Moreover, there was 1

)
a pressing need for these very papers to acquaint industry to i
4

the methods of quality control and statistics in connection with

the World War II effort. And Les helpad promote the short courses

i on statistical methods in industry. There was a great deal of

e £ e et T
e i T e T it

4 : interest during this period concerning the concept of "economical :
lot sizes", and also the concept of producing very large "homo=- =

geneous lots" so that for ammunition at least we could get rid of K

; the situation where at a field artillery battery site there existed i

a mixture of roun%s from several or many lotas with different lavels

» of muzzle veloclty and degrees of surface~finish roughness,

&: In the mid-nineteen Forties, a very significant and World-
%Q Wide development occurred due to an idea of our imminent and es-

! teemed Scientific Advisory Committee member, John von Neumann. He ;

' |
| had suggested the constructidn of the ENIAC or Electronic Numerical :
{ e a digital computer -

Integrator and Calculator at the BRL. We saw the handwriting

R SUREE SUPY-, 1 SR - WP JPL, SLEIPE S £ Shy

on the wall: The ENIAC could be used to Monte Cario anything to

e
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death, in addition to the more straight-forward,computationl of

mathematical and statistically tractable functions. And so many

e

statistical problems were planned! First, however, there had to

P L L V)

be some calculations on the distributions of outliers, and thae

L

ENIAC staff was looking for work! It was then that I laarned

about priorities and the real importance of any statistical problem

\ to the countryl !
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$ Cnce they got the ENIAC wired for my outlier problem, the Atomic
Energy Commission called on Gen Simon and Johnny von Neumann to
use the ENIAC to obtain an optimum solution to the problem of
imploding the core of a nuclear warhead, with the result, of
courge, that even though our Computing Laboratory had begged for
work, my sugrgestion and the start of some extensiva calculations

1 to keep them busy immediately got a vanishing priority!

In those days of a great scientific effort at the BRL and

‘) . many of the Country's great physicists, chemical physicists, mathe-

B : maticians, engineers, et al, I felt just like Les Simon had always

i ? said, "The engineers would rall him a statistician, and the statis-~
ticians would call him an engineer"! Indeed, we were trying to

! h apply statistical techniques to many knotty physical problems for

' which there was a phisical model that applied well. Perhaps

I would have been much better off in agriculture! We survived

some way or the other and hence got away from the use of primarily
tha probable error which was never to be deleted from firing tables

though!

Now, getting back to the uses of Army Statistica,; which led

up to the Desgign of Experiments Conferences, we record that a

very good account of the statistics in the Army from the very be- E

TR,

ginning has been prepared by our gcod friend Clifford Maloney (The

American Statistician, June 1962), who tracad various statistical

e R

;i interests in one way or the other from very early times - he
started out with Daniel Bearnoulli in 1777. As pointed out by

Maloney, there certainly was much vital interest in medical




statistics of the Army from the beginning, and at West Point the g
graduates needed to know something about the dispersion of Shots. E s
on a target, and least squares and the adjustment of data. 1In -
fact, in early times, the bast engineers in the USA were really |
coming from West Point. Then again, there was always conlid;rable l E
interaest in the sensicivity of explosives to impact or shock, the i
| sensitivity of primers and other items of Ammunition, which no !
doubt brought about the so-called "Bruceton Method" of sensitivity
analysis, and later daveloped inte the Dixon-Mood "Up and Down"
technicque at Princeton, and since has been widely used. Naturélly, ! ke
Dixon and Mood were students of Sam Wilks, who ayain enters the {
general picture! 8o you see, the Army did indead have the most
natural needs and demands for the application of statistical
methods, and Sam Wilks was the first university professor to recog-
nize this vital development for the good of all concerned, as he
was always in touch with so many important applications. oy
I think that the Army Design of Experimants (DOE) Conferences ‘
Sam Wilks started have performed the the vital task of fulfilling
the nsed for cross-fertilization of statistical theory and prac~-
tice, even though these conferences occurred only emce A year. g

It is through the Army DOE conferences that we have become ac- 1

quaintad with each other, discussed common statistical problems, ﬁ
i presented solutions to others, learned a lot from the aminent ]
university statisticians and gotten their best suggestions during

the clinical sessions. Moreover, this has all stimulated Army
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satisticians to pexform very good work and publish a number

; of useful results for others to apply. 1If it had not been for

Wilks' vision and the DOE conferences, we would have been off

to ourselves, no doubt,working very much more inefficiently.

Now all of you have the nice little pamphlet prepared by Bob
Launer for this, the Twenty—fifth anniversary of the Army DOE
conferences, and we note that the saries got off with a bang in 1954
as Bill Cochran led with the philosophy underlying the the design of f
experiments. Churchhill Eisenhart spoke on principles of ran-

1 domization (Isn't that still an unsettled topic ?) and John Tukay
headed a panel on "Where do statlsticians f£it in?"). Jack Youden
aided in his most interesting way of talking about the design of
experiments in industrial research and develpoment. The applica-
tion of order statistics and problems in subjective testing came

s into the Second DOE conference, and we were fortunate to have

R. A. Fisher at the Third conferencel Also at the Third confer-

ence Ho Hartley spoke on changes in the outlook of statistics

brought about by modern computers, and Ben Epstein, who at one

time even worked at Frankford Arsenal, covered what was to become
a very important Army field "life-testing" - and later reliability
( i‘ and reliability growth. Hera at Natick fof the Fourth conference,
! it was appropriate to have L., H. C. Tippett discuss statistical
methods in the textile industry, and the Fifth conferenca taught
me a lot about smoking and lung cancer (now forgotten!) because
of the lively debates between Joe Berkson of the Mayo Clinic and

Jerzy Neyman (both smoking, I believel)
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The thcme or title of these conferences was stretched many
% times, I am reminded, to include many important topics of the
.% day or timg,'and this was necessary and good too! In fact, I
f note that Egon Pearson gave the keynote address of the Eighth
7 : conference on a statistician's place in assessing the likely

i ' operational performance of Army weapéns and equipment, or the

i . need for statistics in military operations research and weapon

B systems analysis. 1In fact, the Army has a parallel series of

conferences, started in 1961, known as the Army Operations Re-
search Symposia. I found that the field of operations research
was being staffed primarily ky mathematicians, physicists, en=-
gineers and others, but not enough statisticians, who could aid
in their modelling problems of stochastic processes. For example,
for probability of hitting problems there was often the need to
have simple approximations to the distribution of quadratic forms
in normal variables, and techniques like the Wilson-Hilferty
i transtormation of Chi~sguare to approximate normality and the
/those darn that
Polya-Wilson approximation to/cut-off normal integrals/were found
to be very useful. Moreover, we also saw that the theories of

life-testing would apply to Lanchester type combat theory.

Becayse of the critical need for the evaluation of weapon systems,

and later many other military operations research topics, the
Army OR symposia have attracted a large number of "high brass" g
type visitors, Statistical topics have been often discussed at .
the Army ORﬁconferencel and OR topics at the Army DOE confaerences.

Forget titles!
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.é ; In the Spring of 1964, some six months before the Tenth con-

Tk

4 : ference, we got the shock of our lives with the untimely passing
H - of Sam Wilks. For the Tenth conference, Les Simon came forth with
an excellent and informative paper on the stimulus of S. S. Wilks

to Army Statistics, and the high importince of the DOE conferences

to Army statistical endeavors.
Fortunately, the DOE conferences have proceeded to cover the water

front, and stimulate and train more statisticians.

Now although I have merntioned many of the key benefits and

| much in the way of significant progress that has resulted from
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the DOE conferences, let me now jump to a look at the whole series,

or the view from an operations research eye. To begin with,

i oA T R

= it becomes quite clear that we have léarned a lot about modell;ﬁg
processes (stochastic) or fitting models to data in order to
make more general predictions, or to summarize. "Models" ?

Yes! And this reminds me of what George Box is quoted as saying,

"All models are wrong, (but) some (even) work"! How true this

is! Aren't models competitive, and haven't we found that the

situation doesn't exist for which only one model is right and

e e v e £ i L et E e i

; all the others wrong? 1In fact, we are often lucky that any of

several competitive models may serve the purpose at hand very

well. VYes, I think we have learned how to model many important

Army areas of application, and this has also brought about model
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development or better theories.

Obviously, the great benefit to the Army from the DOE
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conferences has been the expert counseling of in-house statis-
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ticians by the eminent university statisticians who have so kind-
ly giveh of their time and experience. One has only to look at the

little booklet of featured speakers to be very highly impresﬁed

i
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with the caliber of the talent. We greatly appreciate this, as

their help, including the clinical session suggestions, has been

| outstanding, and for very difficult areas of applicatlon. :
This brings to mind another point. The US Army is a very

large and diversified organization. In case you need some con-

verting on this point, just attend one of the Army Science Con-

e,

ferences held biennally at West Point. 1In addition to our little

corners of application we have discussed over the years, at the

T flTERTET R

Army Science conferences, they have presented papers on, for ex=-

ample, sampling the polar ice caps -~ which brought up many sta-

tistical problems of note - or even the extraction and analysis
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of snake venom! What are the main controversies about? You
guessed it: the instrumentation, the measurements and their in-
terpretation. Army investigators has grown increasingly aware

of errors of measurement, precision and accuracy, and even just

% how to define these illusive concepts. And so have others. For
example, Committee E-1ll of the American Society for Testing and
Materials has for some 20-25 years been working on the problem

of standard;zing the views of engineers, chemists, etc., on the

subjects of precision and accuracy, and come forth with a recom-

mended practice. I 3till don't see an end to this effort, for
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there are enough "divinely endowed", stubbornly statistical minds

to bring about nothing but impasse's, (Incidentally, I know that I
alone am

right though, and they needn't think they can sway me to a com-
promisel!). As a passing remark, there's a full time job for a
young, competent statistician for NASA, the FAA, and such agencies,
in connection with sampling the atmosphere in order to establish
temperature profiles, ozone content profiles, etc., by knowing the
capability of their instrumentation for the first time,

We have learned much about the statistical design and analysis
of scientific type experiments, and the construction of designs -
the latter, I think! Furthermore, I see evidence very frequently
of some "fancy" experimental designs that Army investigators are
using, with very sophisticated analyses, too. On the front cover
of the program of the Tenth Conference, there is a 10 x 10 Graeco-
Latin Square, and no one yet has pointed out an error in it!

When th2 nice, balanced experimenta have been violated in one
way or the other, speakers like Hoh Hartley (who regrets that
his duties as President of ASA keeps him away today) have come
along to help or straighten us out. We have used linear models
mostly, but have been hit by nonlinear mcdels at times, and
George Box has on several occasions given us his unique approach
to time series analysis.

There have been many advances over the years in the analysis

of contingency tables, and count data generally. We have had

many contributors on this subject speak to us, and the sevaral
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approaches presented to us, including Kullback's information %
théory approach, and some of the recent work of Feinberg in |
our preceding two-day tutorial course. Perhaps the US Army. 5
Operational Test and Evaluation Agency has made much use of “
contingency table analyses, and have benefitted from them. *3

I will continue to try and sort out that problem, and I note 4}

that my experience has been primarily in connection with the %
comparison of two or more binomial type proportions, and irre-
spactive of Fisher's fixed marginals, and stuff like that, I ;
still don't want to confuse the issue by imbedding the compari-
son of binomial p's in a contingency table analysis, Maybe the
real experts have other views. .
Hasn't the field of reliability and related applications

hit us with a big bang, to say the least ? And the high=level

"brass" or managers have shown the greatest of interest in it
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too. Remember, I remarked that Clifford Cohen in the late 1930's
vrote his dissertation on the obscure subject of truncated sample

theory? Well, finally the area came to life and how! Although
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the normal distribution was the "universal"” one in the past, it !
didn't "take" with the reliability analysts at all, and they §
aimed for the exponential distribution. At ths 1977 Monterey J
Conference (23rd), a paper was givaen by Herback, Green and Blumen=-
thal on the "curse" of the exponential model, and they quote:

"The exponential is wrong,
But works like a song.
Beware the Weibull:
It's incorrigible" - Anon

Remember George Box - All models are wrongl!
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There is some heavy interesat in reliability growth, and the

whole field of reliability will continue/will continue to expand.
There are now 8o many methods or recommendations for obtaining
confidence bounds on system reliability that an appointed committee

has not been able to standardize on a technique for DOD. It

5 might be said that sample order statistics are of much importance

ini

to the Army nowadays, and often even help to take care of the

.,
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outlier problem. Finally, reliability analysts have worked on

estimation and other properties of the two~ and three- parameter

Weibull models so much that this has actually aided in the apread
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of the Weibull distribution to many other areas of application

than reliability. Perhaps this is bacause of the robustness of

@ ¢ the Weibull model in representing a variety of shapeas.

¢ , A very o0ld statistical problem is that of bio-assay types of
analysis, and it borders on the estimation of risks and safety
levels in any number of other fields. Thare are many papers on

the subject of quantal response, "sensitivity analyses", explo-

sive sensitivity (Bruceton), ballistic limit, Up and Down method, etc.
which have been aired in these conferences. Quantal response

investigations, and eppecially the estimation of both high and

;_ : low percentage points (of unknown distributions), does indeed
cover a very important statistical effort'for,tho Army, and it

will continue to expand also. Maybe this is an area for which

the use of physical models is needed in addition to statistical

[ analyses, or at least a combination of both. We will face more
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and more safety type problems, for which there will be heavy de-
mands for statistical treatment, while we used to aveoid them al- E
together. Let me mention one nasty little problem having to do :
with armor protection in tanks, or penetration mechanics, and ?
hence for safety of tank crews as a result of armor thickness ﬁ
; determination and design. It is also a statistical problem the
i Army continues to need help on to estimate the parameters for -
zero chance of penetration. Do you like continuous distributions
that slowly change to a series of binomial and continuous models

of some kind? And even approach a binomial distribution with

parumeter zero? In this case, we start firing at a piece of armor

plate of a certain thickness, and for the high-atriking velocities

AR

we will (usually) get 100% penetrations of the projectiles through
the plate, and there will be a "residual” velocity distribution

e Camris e A i

for the projectiles or pileces of projectiles which have penetrated
and come off the back.

i the plate But as the striking velocity is decreased, then the

proportion of projectiles penetrating the plate will decrease, :

ultimately to zero for low-striking velocities, and thus we say E

R T T

that a safety level exist somewhere, or at least we would like to

know just where, for example, only 1 in a 1000 of the projectiles

|

J

I would penetrate. The curve or residual velocity versus striking %
velocity gets very steep near the bottom, obviously, and its a i

challenge to ballisticiane and statisticians to deal with the

precise and highest striking velocity for which zero penetrations

occur. What I am also indicating is that there are many problems

of interest for which statisticians and physical scientists must

work as team members, and the DOE conferences guarantee just that,

18
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Let us not forget the field of sampling inspuction or acceptance

PR N Iy

sampling inépection, and the DOD's use of standard sampling in- g

15

spection tables and practices. Theae are important activities
that the Army initiated with the original help of Harold Dodge,
and our DOE Proceedin;s include a number of papers on the subject. ﬁ
This is really the area of statistics that taught us much about ?

operating characteristic curves, or power curves, and the deter- :
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mination of sample sizes, and the like. Thus, many statistical ;
areags of interest spill over into other topics, and so the process
continues,

Now I have made my little choices of some of the benefits

and topics of value that we have been priveleged to be part of

in our twenty-five years of Army Design of Experiments Conferences.
Paerhaps you can expand or improve on what I have covered and hence

make more sense out of thingas. I invite you to do so. In any

event, it certainly seams quite clear that these conferences |

have been very "cost-effe~tive" to the Army. i

I think it was Cliff Maloney who once suggested that there

B SRTTEY

should be published a volume of the best papers of the proceedings

of these conferences. This assignment I was given made me look

through the whole shelf-wide proceedings, and I agree that there

P Ny S

are certain of the papers which indeed should be brought together

e

in some kind of memoirs. | :

el oS

Maybe we can now get Francis Dressell to make a remark or

two, as we have dedicated this the landmark 25th Conference to

him. Francis]
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SUMMERIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran
Professor of Sta.istics Emeritus, Harvard University

I first met this problem in the thirties in agriculture. I wrote a
paper on it (1), and later a more ambitious paper with Yates (2), in which
a number of examples were worked. W: triec to see in what respects tie
analysis of a group of experiments resembled and in what respacts it differed
from the analysis of a single evpariment.

The need to summarize results of a series of experiments on the same
treatments arises in two types of application. The first type may be des-
cribed as exploratory; a number of experimeﬁts on the relative performance
of something or of two treatments have been carried out, and we are trying
to answer the question; what is the present state of knowledge about the
relative merits of the two treatments? For 1nstahce. the recent academy
study of saccharin started with the experiments in which large doses were
given to rats; these were the prime experiments. To cite a second example,
Yates and Crowther realfzed at the beginning of World War II that Britain
would have to import most of her fertilizers during the war and would be
short of fertilizers. Accordingly, they summarized the experiments (4)
about the responses of the common farm crops to fertilizers in order to
answer the question: What {s the present state of knowledge about the
effects of fertilizers and to provide material for an intelligent rationing
system for fertilizers?

As another example, I was in a group that studied two commen methods of
surgery for duodenal ulcer--vagotomy (cutting the vagus nerves) plus a radi-

cal antrectomy (which removes the lower portion of the stomach) versus

vagotomy plus the miider pyloroplasty {which widens the outlet of the stomach

to provide better drainage). 'm
| 21 |
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We found four experiments that appeared to have been carefully done
and properly randomized. We could have come across a8 number of comparisons
that were well done but not randomized--the type sometimes called observa-
tional studies. Since often we cannot use randomization and have to make a
comparison without it, I would have been interested in including the obser- .
vational studies so as to learn whether they agreed with the randomized
studies and 1f not, why not? But the medical members of our team had been
too well brought up by statisticians, and refused to look at anything but
randcmized experiments. In this type of surgery, we may expect the experi-
ment to be of different designs and perphaps differing numbers of replications,

The second type of application occurs commonly in agriculture. It
differs from the first in two ways. It is known that the relative perfor-
mance of a treatment (variety of a crop or fertilizer) is 1ikely to vary
both from field fo field within a year and from year to year. Thus experi-
ments ara Tikely to be repeated in different fields and for a number of years.
Secondly, *there {is a better chance that the experiments, being jointly planned,
are of the same design and number of replications. For instance, when the
growing ¢t sugarbeets was introduced into Britain after World War I, the
government conducted 3x3x3 factorials (ultimately 30 per year) at the leading
centers for a number of years.

The objective of the experiments may be a series of decisions as to which
varieties of a crop look promising and should be kept for further testing,
which varieties should be discarded, and which varieties having been fully
tested, should be part of an approved 1ist and have their seed made available

to farmers. As an example, Patterson and Silvey (5) have described the trials

of varieties of cereals that Britain has conducted in recent years, the




designs belng incomplete blocks. Thils kind of screening program is not
confined to sgriculture. It may be used in seeking the best drugs or
vaccines for some purpose in medicine, or in seeking persons best capable
of doing some task. In 1963, Federer gave & bibliography of some 500
papers on screening programs.

2, Miscellaneous Experdments in Exploratory Work
I'll start with exploratory experiments done by different people at

different places and times, Since these experiments were not plarned as

a coordinated serles, we must expect them to differ in designs, and in

| numbers of replications. First we must think of the question: of what

E population, if any, can these experiments be considered something approaching

y a random sample? Is this population relevant to future applicaticns of any

conclusions that we draw? In same cases we may reluctantly conclude that

the experiments do not sample any population of interest to us, ard decide

? not to prepare any sumary. In same cases the experiments are so variable

that some must. be thrown out before any summary 1s attenpted. The way in

" which the experime'ntét‘were done also affects the nature of the population

that they sampla. The nature of the experiments also affects the kind of

¥ population that they sample. In the National Academy study of saccharin
to which I referred, the doses in the laboratory experiments were so large

@\ that the estimates of the effects of more normal doses depended to a

{ substartial extent on the kind of model used in extrapolating the experi-

' mental results. In experiments camparing two methods of surgery, the
experiments may be confined, for ethilcal or loglcal reasons, to the kird
of patlents whoee doctors state beforehand that they can safely take either
method of surgery. Otherwlse, 1t 1s difficult to interpret the results of
the experiments. Thls restriction affects the character of the population
to wham the conclusions apply.

In agriculture, as 1 have stated, we have to wontend with varlations

f in both space and time: But in other fields of application there may be

3 no strong reascns to consider time as a separate source of varlatlon, even

though the experiments willl have presumably been done at different times.

] So in aonsidering a summery oif' miscellaneous exploratory experiments, I

shall canbine time and space and speak of treatments x places.

23
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experiments interactions for the 1th Treatment in the jth experiment. We
may also expect experiments to have different variances c§ per observation
and to differ in number of replications nye

For the jth experiment, a model that seems reasonable with a quantita-

tive response is that tha mean of the {th Treatment in the jth experiment is

where Y44 1s the treatments x experiments interaction and the variance of
2 = ] =
the error term &3 is °J’"1J (1 =1,2,..0,t 3 =1,2,...,k).
In a combined analysis of these means, a reasonable first step is to
form a two-way treatments x experiment table of these means. If all treat-
ments are present in all experiments, an analysis of variance into the

following components should be easy.

df
Experiments (k=1)
Treatments (t-1)

Treatments X Experiments  (t-1)(k-1)

Pooled error

The purpose is to test the interaction. If some treatments ave missing from

some experiments, a least squares analysis appropriate to missing data fis

used. In this case the Treatments 1ine 1s Treatments, adjusted for experiments.
The pooled error in the analysis of variance of the treatment means is

(I/k)(szlnij). or if the sg seem to be homogeneous, 52(1/nJ). We will want

to examine whether the sg appear to be heterogeneous, since this affects the

F-test of the ratio treatments x experiments/pooled error. For this we can
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use Bartlett's test, or if the datas seem nonnormal and we want a more robust
test, we can use Lavene's test, based on the absolute value of the deviations
that lead to the s

g f 8% seem markedly heterogeneous, the F-test of the interactions against the pooled

s that appears to be less affected by nonnormality. If the i'ﬁ

- f error 1s not exact, but assingning a number of df to the pooled error by
Satterthwalte's approximation should provide an approximate test,

The next step is to reach one of three decisions about the Treatments x
' experiments interactions, (1) that it is negligible, (i1) that it 1s not
) negligible but has no discernable structure. By this I mean that although

the effects of the treatments vary from experiment to experiment, we have

no information for making different predictions in different parts of the _?ﬁ
-¢f population and must draw single overall conclusions about the effects of the ; !
& treatments(i1fhe third case is that in which the interaction is of a nature |
1% % that we think we understand, and is large enough so that different treatments ?
§ i win in different parts of the population that can be described. In this | "
i . | case we expect to recommend different treatments for different parts of the

population,

4 Consider first case (1) 1n which we judge that the treatments x experi-
ments interactions are negligible. If the experiments differ in number of
replications and in their error variances, a question to be considered is: i
Should the treatment means 1 1nd1v1&ua1 aexperiments be weighted in forming |
:ﬁ the overall means, so as to give more influence to the more accurate experi-
ments? If so, what should the weights be? If the error variances cg were

known, the weights should presumably be wJ = oglnj. but the variances are
2

3 appear to be equal so that weights ny can be H

1 only estimated, unless the o




used for the treatment in the jth experiment. Various authors have worked on
this problem of weighting with fallible welghts.

The first step is to find out 1f there is much gain in accuracy from

the use of weighted means. If the s§ appear to be homogeneous, and the

weights are the known values nj/§§. this can be done, because the ratio of

- ; the variance of the weighted to the unweighted mean of the Yij is

i (ij)(z l/wd)/kz. For instance, {f one-third of the experiments each have ny

i with relative values 1, 1/2, 1/4, the relative value of the variance of the
i weighted to the unweighted mean is 36/49 = 0.73. The situation is less
!

2

@. favorable to the welghting if the 8y differ, so that we have to use something

L
hs like estimated weights nJ/sg. Under normality, the maximun likellhood estimate

of the overall mean My is

ng(f, = 1)
z - A
b .stJ + "3(313 - Ui)

(;1J_G1) «- 0 .

This har to be found iteratively. In this type of estimate, an experiment
with Jow sg and apparéntly high precision is prevented from dominating the
ovarall mean if 1% disagrees markedly from the value suggested by the other
experiments, since the term nJ(S"U - ﬁ1)2 will be large, and will decrease
the weight given to this experiment.

Some years ago, C. R. Rao (7) brought out a new method of estimating

variances and variance components called the MINQUE (minimum norm quadratic

unbiased estimator). Since I have been interested in this problem for over
f 40 years, I asked J.N.K. Rao of Carleton University and P.S.R.5. Rao of the
University of Rochester if the MINQUE method woulu lead to improved estimates
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of the weighted mean., Both men looked into the problem--J.N.K. Rao in the
case with no treatments x experiments interactions which is now being con-
sidered and P.S. Rao in the case in which we assume a random treatments x
experiments interaction with variance 05. which also has to be estimated.
Both men discovered what 1 had suspected in working with MINQUE-~that if one
is trying to produce an improved method of estimating variance components,
it may not be wise to make the estimates unbiased. With unbiased methgds
one may get variance component estimates that sometimes take negative values
and have large variances. Both men produced adjustments to MINQUE that are
essentially positive. J.N.K. Rao's method (8) uses non-iterative weights

rather similar to the maximum 1ikelihood weights. The weights are
Wy g (f + V)/TFs2 4 0 (5, - 520
J NARN 373 IV i '

' ig.where 91 1s the unweighted mean of the~§1d: Some 1imited Monte Carlo studies
have shown that the weighting does better than the maximum 1ikelihood estimates
of the treatments means except when differences in the error variances are
extreme. This estimate also does better than MINQUE and better than the
simple weights wd = nj/si and is probably the best found thus far.

For estimating the gain in accuracy from the use of erroneous weights
1ike these, the previous figures for the relative accuracy of weighted to
unweighted means must be reduced, because of sampling error {n'the weights.
The dampening factor depends both on the average df with which sg are esti-
mated, and on the amount of heterogenefty in the weights. For the previous
example with weights proportional to 1, 1/2 and 1/3 in thirds, and 1.36 if

the weights are known, the dampening factor is approximately (¥ + 6)AF + 8) ,

where f is the average number of df.in sj.
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Thus if the s§ have 6 df on the average, the relative efficiency of weighted
to unweightec means is estimated as (12)(1.36)/(14) = 1.18--a rather modest
gain from weighting. Before resorting to weighting, check also that weighted
means apply to the same population as unweighted means. For example, if the
weights tend to be high when the mean yields of the experiments are also
high, we may conclude that the results for weighted means apply to a popula-
tion having a higher mean yield than our actual population and decide not to
use weighted means.

For comparison between the estimated means of the treatments, we need
standard errors. with unweighted means, the estimate of their standard error
is lt(sglnj)/k. With the experimental error variances of the individual
experiments taken as homogeneous, the estimated variance of the mean weighted
as ny is szlznj. For Rao's estimate with fallible weights, Rao (8) has given
a rough estimate of the variance of this welghted msan, which also implies
a dampening factor for the fact that fallible weights are being used. The
Jacknife estimate 1s another possibility..

When the treatments x experiments interaction is significant, we need
to see if we can understand the siature of the interaction. For this, a two-
way treatments x experiments table of residuals {s helpful. Sometimes there
is no winner; different treatments appear to win in different parts of the
population, but either we do not fully understand the interaction or do not
wish to use it in a recommendation. Somatimes there are two distinguishable
parts of the population in which the ranking of the treatment is different,
and we understand why. Studert (10) cites an example. After a long series
of experiments, the Irish Uepartment of Agriculture introduced Spratt-Archer

barley as the besl siited o the country. In one county the farmers :efused
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to grow it, claiming that their native barley was superior. In order to

convince these favmers, the Department of Agriculture made same special

comparisons in this county of the native barley versus Spratt-Archer. To ' g

their surprise, the native barley was superior. The reason also became

clear. This barley is a quick-starting variety. Now in this county, ' :

% : farming is rather lackadaisical, so that the weeds flourish. The weeds |
. tended to smother the Spratt-Archer barley, which starts slowly, but *“he

native bariey, starting quickly, could smothar the weeds. Another maxim

PR v i S e

from this example 1is make sure the experiments sample the population to which

their results will be applied.
If theve are two parts which have k1 and k2 experiments, the following

e T

breakdown of the interaction is relevant

O Wi i e, A, ot g

df
% Treatments (Part I - Part II) (t-1)
{ Treatments Part I experiments (£-1)(kqe=1)
g Treatments Part II experiments (t-])(kz-\)

In this breakdown, we expect the first term to be large and the other parts

small. Tn addition, we need to anaiyze parts I and II separately, in order

to see if there are definite treatments differences in each part.
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If the interaction is significunt and is assumed to be random, the

,< ' variance of a treatment mean {n an individual experiment {is (os + czlnj).

Tt S )

which moves nearer equality because of the term o$ but also means that an

extra parameter has to be estimated if weighted means are contemplated. In

a Monte Carlo study by P.S.R.S. Rao, Kaplan, and Cochran (9) several types

? i} of weighted means including a revised MINQUE were included but the unweighted




mean proved very hard to beat, as might be expected, unless 03

§ 1s extreme. Use of the urweighted

is
small and the vardation in the o
mean has the advantage that en unblased estimate mean of the variance

of the overall mean of & treatment is I(y, - 712 /k(k-1).

If the original observations are in proportions, remember that a
decision, e.g. whether a single overall mean has enough advantage overall
over the other means to recommend it, or whether two means should be
recommended for different parts of the population, must be made in
proportions. If the cambined analysis 1s made in some other scale,
such as angles or logits, because it 1s thought nearer to normality or
in some ways more sultable, remember that means in the original
proportional scale will be slightly blased when we transfer back.
Queriouille (11) has glven approximate corrections for this blas, which

do not appear to be well known. Let 52

be our estimate of the varlance
of Z (where z denotes the transformned scale), that 1s, the mean in the
transformed scale. If an angular transformation is used, Quenoullle's
correction for blas in the transformed mean 1s to increase sinzi by
3(1 - e'EE Yeos (2Z). If logits are used with equal weights, the
usual procedure 13 to take p = eZ / 1+ ez) when transforming back
to p. Quenouille's correction for bilas is to add (n--l)52/2n to z before
taking €% / (1 + €%).

3. Variations in Both Time and Space

This situatlon is likely to occur primarily in agriculture, Since
the experiments are likely to be jointly planned, they may have the same
designs and number of replications, the same experiment being repeated

at the same place for four or five years. As mentloned, the number of
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years will cammonly be limited to at most four or five, since a larger
number slows up any recammendatlions. But the experiments may not have
the same numbers of replication - more may have been added in later years.
In varletal trials, a new varisty may be added in the second or third
years, so thet different treatments may have different numbers of years
at any given time. However, unless the numbers of replications differ
greatly, a preliminary analysis of the treatment means will usually be
adequate and 1s fairly eé.sy » although there are extra camplications and
full least squares may have to be used if some treatments are only present
in the later years.

It will usuelly be necessary to treat the treatments x years

variation as random, with variance 05 s even 1f 1t does not act like

a rarxiom variate. A good deal is mow;: about the Influence of weather
on crops, and we may have found, for instance, that in & good year
the best treatments have a greater advantage, sc that the treatments x
years interaction is definltely not random. But a superior treatment
before recommendation, must be supericr, on the average, over a span
of years, taking °12-,y into account, since we cammot recamend a different
treatment for different years.

The preliminary analysis of variance and the expected values of the
means squares are shown below. I have treated the treatments x places
interactions as random as well as treatments x years, slnce thils is

usually the assumptiorn that has to be made if it is a question of

recamerding the overall use of one treatment,




dar Expected value of mean squares

-2 2 2 2 2
Treatments (t=1) o° + nartpy + npay. + nyoy,, + npyog
g 2 2
TxY (t=1)(y-1) 0% + nop + npag,
T x P (6~1) (p-1) 3 + no? + nyo?
tpy tp
-2 2
TxPxY (t=1)(p~1)(y=1) - + nog

Pooled error 52

In presenting the expected values, I have taken the simplest case,
in which all experiments are of the same size and design, the symbols n,
t, p, ad y standing for number of replicaticns, number of treatments,
number of places, and number of years. The symbol # 1s , Of course,

the true pooled error variance, The MS,cpy is tested against error, and if

F 18 about 1, this mean square may be carbined with the pooled errcr,
The expected values are written as if treatments are also randam, with
varisnce oﬁ. If the effects of treatments are filxed, as they usually are,
replace 012; by what is usually called SE - z(t-E)z/(n-l).

From the expected values 1t 1s clear that the treatments x years
and treatments x places interactions are tested by an appropriate F test

(approximate if a§ varies from experiment to experiment) against the mean

square for the tpy three-factor Interaction, and that an unbiased estimate
2 X .

of Sty is (MSch - MStpy)/np. For the mein ef'fects of Treatments, no

single line in the analysis of variance is a proper error. An unblased

estimate of the error variance for the error of a treatment mean, if

Interactlions are present and random, 1s

Mstp + Msty - Mstpy

32



=y
=
ik oa

s
B ~E T R
& ¥ Rh TR
o= TR

i .
5 i and an approximate F test of the treatments mean aquare may be made
] 8 :
5 %L by taking F = mt/ (MStp + MS,(_‘y - Mstpy)’ with Satterthwaite's
} ?1 approximation used to ascribe a number of df to the denominator.

ke
‘,i i However, in a small Monte Carlo study of experiments, Hudson and ;
i B 5
l B Krutchkof'f (13) found, scmewhat surprisingly, that a rival ‘;!,J
z i
H B ™ I:
{ 1\5‘ F = (M3, + Mstpy)/ (Mstp + MSW> using Satterthwaite, had somewhat
| § better power and recammended it, although it did not approximate the |
;r 5% and 1% levels of F when the null hypothesis was true. E

Since whether we recommend one treatment, two treatments or suspend

b | Judgement for same reason depends mainly on how the treatments vary in ?
«\ effects from place to place, the two-way table of treatments and places :
| ‘ deserves careful study. The treatments x places interaction is E
I': sometimes heterogeneous; some comparisony of some treatments have a
higher mean square interaction than others., Subdivislons of the
treatments and places and the treatments x places sum of squares should
be tried.

Thus, as we have seen, the summary of & series of experiments calls

mainly for experience in the analysis of variance, which we now have.
It 1s well to adopt something of the attitude in exploratory analysis

and be on the lookout for anything unexpected,since the nature of the
tp interaction is often a hard thing to puzzle out.
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ROBUST FILTERING AND SMOOTHING OF TRACKING DATA

WILLIAM S. AGEE and ROBERT H. TURNER
Mathematical Services Bvanch
Analysis and Computation Division
Whits Sands Missile Range, NM 88002

ABSTRACT

Robust methods provide a frash approach to the problem of treatment of
wild observations in filtering and smoothing probilems. The robust M-esti-
mates of regression are extended to filtaring and fixed lag smoothing em-
ploying a pseudo-density of the obsarvations in a conditional mean deriva-
tion of the filter and fixed lag smoother. These robust methods have been
applfed to similated and real tracking data to obtain improved estimation
performance in the prasence of wild cbservations.

INTRODUCTION

Robust filtaring and smoothing are a natural extension of the robust
M-estimates of regrassion developed by Huber [1]. The robust M-estimates
provide a natural treatment of outly1ng observations and have been ex-
tremely successful in dealing with outliers in other data reduction pro-
b\ems.{zl and [3]. The extension of the M-estimate methods provides a
fresh aqproach to the problems ceused by outliers in f{ltering and smooth-
1n1 applications. Robust methods for estimation are designed to perform
wall when observations fram contaminating distributions are present. The
conventional astimation tachniques of least squares, maximum 1ikelihood,
minimum var{fance, etc. may bacome useless when the observations ars con-
taminated by gross outliers or wild data points. When using these esti-
mation methods, outifers are often treated b{ testing the residuals. If
it {s decided that a residual is statistically toe large, the corraspond-
ing observation 1s declared an ocutlier and is not processed. These hypo-
thesis testing methods are often successful if only a small number of out-
1iers are presant but breakdown for larger proportions of outlying obser-
vations. Also, in order for outliers to be detected, they must be re-
latively large comparad to the measursment noise. The detaction methods
based on testing of residuals are relatively insensitive to small outliers
which leads to an inflation of the mean square estimation error. Thus,
methods for treating outliers should be evaluated on their ab111t¥ to
achieve a small mean square estimation error as well as their ability to
offer protection from gross outliers.

Yery 11ttle development 'has appearad on the application of robust
estimation tachniques to filtering and smoothing. The most notable work
in this direction {s that of Masreliez and Martin [4]. Their development
of the application of M-estimates to the Kaiman f{lter is mainly theoret-
{cal. The emphasis hera is on the development of some practical rasults on
the appiication of M-estimates to filtering and smoothing. We have ap-
plied these methods to filtering and smoothing of tracking data from tra-
jectory measurement systams at WSMR, Using simulated tracking data we
have also performed extensive Monte Carlo evaluation of filtering mathods
based on M-estimates to determine the conditions for which we can expec?
to benefit from the application of these methods.
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M=ESTIMATES FOR REGRESSION
Given Scalar observations Yo { =1, N of a 1inear mede!
Yy Xe+ey . (1)

shere Xi {s a row vector of known independent variables and o isa random

error term we want to estimate the unknown p-vector, 6. The M-estimate
of & minimizes "

g (lye xq)/s) » (@)

where o(-) 13 a specifiad function and s is a robust measure of dispersion
of the residuals, y, - X,e. Minimizing (2) by differentiating with respect

to 0 gives, X
T <
L (tyy - %@)s) =0 (3)

where y-1s the derivative of p and 8 1is the M-estimate of 9. .(3) is the
analog of the normal equations in least squares estimation. @ i3 computed
;t:r:%ivoly E{Japp1x1ng a weighted least squares algorithm to (3). For
etails sae [2].

. Rather than spncifﬁing the function p, M-estimates are usually de-
scribed by specifying the function y. Saveral y functions have baen pro-
posed in the 1iterature. The only ¢ functions considered here are varia-
tfons of the one proposed by Hampel [5J. The Hampel ¢ function with break-
points a, b, ¢, denoted by Ha(a,b,c) 1s given by : .

% ' - |x| %

<] aesanix) as|x|%b ' 4

#x) alx-cosgn(x))/(b = ¢) bS{x|% - 4
0 Ix|%

N

| { '

2 b ¢ * X
Humpel ¥

The M-estimates can also be applied to regrassion problems pav1ng vactor
observations and to nonlinear regression problems. If the probability
density function p of the observations is related to ¢ by p*/p » =y, the
resulting M~estimate is maximum 1ikelihood. For any y function we call

a~?a pseudo-~density and derive filters in some conventional ways with the
density function of the observations replaced with a pseudo-density.
APPROPRIATE NON-GAUSSIAN FILTERING
Assume that the statex(k) of the process being observed {s governed
by the discreta linear modal, '
x(k+1) = o(K+1,k) x(k) + u(k) (5)
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where the state vector x(k) is an n-vector, uik) is & Gaussian state noise
vector with zero mean and covariance Q(k). ¢(k+1,k) 15 an n x n state

transition matrix. Scalar observations, z(k), of the process are given by

“ z(k) = H(k)x(k) + v(k) (6)
where H(k) is a row vector and v(k) is a measurement noise errvor which may
be contaminated by outliers. )

In order to derive robust filters corresponding to the M-estimates of
regression, we use the results of Masreliez [6] on approximate non-Gaussian

filtering. Masreliez obtains an approximate conditiorul maan of p(x(k)jzk)
whare 25 {s the collection of observations, 2¢ » {2(1), 2(2), ===, 2(k)}.
Using Bayes rule p(x(k)|zk) 1s given by

p(x(k){z¥) = g{;(;)l;(k))g{x{*)lzk'jl (7
p(z(k){2*")
In orderkto derive & useful approximation to the cogg1tion31 mean,

ELx(k)|Z"]s of (7), Masreliez assumes that p(x(k)|Z""") is Gaussian with

mean x(k|k=1).and covarfance P(k|k=1). The resulting approximate cond{-
tional mean, x(k|k) 1s given by .

x(k|k) = X(k[k=1) + P(k|k-1)HT (K)g(2(k)), (8)
where g(z2(k) 1s the scalar
gtalk)) = <5200 2 iggRpystata 12¢T) (9)
Ml::!}itz also ahr1vns the second moment, P(klk). of p(x(k)lzk). The re-
su S, , . ’
| P(k|k) = P(k|k=1) = P(k|k=1)HT (k)&(z(K)JH(K)P(K|k=1),  (10)
with '

a(z(k)) = 2L (1)

A second method for approximate non-Gaussian filtering is thc.marE -
nal maxfmum 11kelihood filter. In this case we find the estimate x(k|k)

which maximizes (7). In this derivation we also assume that p(x(k)lzk'l)
{s Gaussian. .The rasulting squation for x(k|Kk) is

X(k1K) = KCk[ke1) = Px]eDHT (0050 [k 2R{RRLACIN - 32

The estimate given by (12) is of the same form as the conditional mean esti-
rate given by (8). The difference in the two astimates is that the right

hand side of (12) depends on x(klk) while the right hand side of (8) depends
inly on the predicted estinate, x(k|k-1). Thus, (12) requires iteration to

sbtain the estimate and 1 in the first {taration of (12), we substitute

x(klk=1) for x(kik) on the right hand side, the resuitihg estimate on the
#i{rst {teration will be identical to the conditional mean estimate of (8).
Thus, the maximum 11kelfhood filter may be regarded as a correction to the
conditional mean filter.
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ROBUST FILTER EQUATIONS

. The robust filtering equations corresponding to M-estimates are obtain.
ed by replacing the dansity function, p(z(k)lzk' , in (9) or (12) by a

psaudo-density, P, whare o' = ¥ (likﬁ—‘—“-(-‘,&M) is @ desired 1n=

fluence function. This substitution results in the following bquatiéns for
the conditional mean robust filtar,

2(k[k) ® X(k|k=1) + L(!:.L‘:.:Dﬂiﬂ ,,(i.(.&).:.!iﬂi&&l&ﬂl) (13)

- | P(K[K) = P(k[ke1) (.-(Lgtl)/sk’)p(k|u-1)u"(k)a(u)p(ulu-i).<14>

chare o' 13 the derdvative of v and r(k) = z(k) = H(K)x(k|k-1). The f{lter }
g squations are complated by the usual Kalman filter equations for tha pre- %
i d{ctad moments. . ' i
3 In order to insure the robustness of the filter described by (13) and
! (14), the dispersion s, of the predicted residuals must be specified so ¢
that 1t is insensitive to outliers. Vs used the MAD estimate of s, com- |
putad from past residuals as ;
1) modtan | 2ked) - HT (ke )5 (k=3 [k=321) | / 6745 (18)

=0, N~

TSR AT TS

whare N {3 & suitably chosan integer.
: * The robust maximum 11kelthood £41tér 1s obtained by replacing the den- .
i sity p(z(k)lzk'1) in (12} by & pseudo-density. The resulting filter 1s {

| given by T ' .
. FCelK) « ki) + HRLLELHLR) (ga_u%{x&m) 06

In (16) wa use X(k|k-1) to denote the mesn o&f p(k(k)lzk"). We use (14) to

compute P(k|k) and use (13) to compute iiklk). Several simple methods are
available for the iterative solution of (18). The simplest of these is to

% use -
?r 3 - e 2lT0 *(;m__u&%aﬁh).) )

0‘0’ ’ - 1
starting with x(k|k) » X(k|k=1) so that the first estimate xik‘k) is the
conditiona) mean estimate, X(k|Kk).

EVALUATION OF THE ROBUST FILTER

Evaluation of the robust f41tering methods duscribed above was done
) with a view toward eventual application to trajectory estimation. The
1 enphasis in the evaluation was on simulated rather than real trajectory
E data. This allows a quantitative determination of any advantages in the
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use of robust filtering i1n the presence O outiiers ana a1S0 an* 1088 1n
efficiency using robust methods when no outliers are present. The simu-
lated trajectory is that of a constant velocity, level flying afrcraft.

The measureaents are of position in each of three cartesian components

with addad measurement noize which is contaminatad by outiiers. The filt-
er mode) assumes the trajectory to have constant accaleration in each co-
ordinate. The filter for each coordinate has a small acceleration state
noise, Q(k) = 5. The outlier contamination is controlled by & two state
Markov chain with a transition possible &t each measurement time. An out=
1{er 1s added to the measurement {f the Markov chain i{s in state two and

no outiier is added if the chain is in stats one. The transition prob-
abilities, Pij, are used to determine the percentage of outliers contam-
fnating the measuremants and also the length of runs of outliers H} the
measurements. The magnituds of the outlier contamination is C « /R, 1.4.,
a constant multiple of the measurement noise standard deviation.

Using the simulated trajectory data a Monta Carlo evaluation of ro-
bust f{ltering was performed. The rms estimation error was computed point
wise for position, velocity, and accelaration using a sample size of
twenty-five. The plots of the rms errors for each of the conditions test-
ed requires far too much space to present hare. Instead, thase results
are summarized by time averages of the rms arror in position and velocity
for sach of the conditions tested. .

Figure. 1 compares the avcrago rms position error for two filters us-
ing tha Hampel y functions Ha(2, 3, 4) and Ha (4, 4, 4). Figure 2 gives
the rms velocity error comparison for the same two filters. Also indi-
cated in Figures 1 and 2 are the ideal rms arvor values which were obtain=-
ad with an ordinary Kalman f{lter with no outliers present and using a
known.measurement covariance, Rk » 400., The Monte Carlo evaluation of

figuroi 1 and 2 was made with a measurement noise standard deviation of
R = 20 ft. R, was unknown to the filter. .

We note from figures 1 and 2 that neither of the robust filters losa much
evficiency from the ideal values when no outliers are present. The ar-
ror curves in figures 1 and 2 behave as expected. Since outliers small in
relation to the measurement noise are hardest to detect, the error curve
rises sharply, Outliers large relative to the measurement noise are easy
to detect so ﬁbe error curve returns to zero for larga outliers.
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We see from figures ! and 2 that Ha (2, 3, 4) has a significantly smaller
mean square error than Ha (4, 4, 4). Except for the way in which the dis-
persion of the residuals is measured, i.e., the MAD estimate in (15),

Ha (4, 4, 4) is a conventional way of handling outliers in a Kalman fi1ter-
ing application. Using Ha (4, 4, 4) any observation whose predicted
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T = -

‘the same methods and assumptions used by Masreliez and us

residual is grester than 4 - s {3 not processed and any observations whose
predicted residual s less than &4 « s is processed as an ordinary Kalman
filter observation. The above Monte Carlo evaluation was made with Markov
chain probabilities P2y = .05 and Pz = .5 which gives an outlier probabi-
11ty of.088 and.an average outlier run length of three. In order to re-
duce the average rms errors, we pull in the breakpoints of the Hampel o
function. Figures 3 and 4 compare the average rms errors in position uad
valocity for the Ha (1, 2, 3) and Ha (2, 3, 4).

e
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F1§ur0; 3 and 4 ware made using the same ‘outl{er proportions and measure-
mant noise standard deviations as figures 1 and 2.

The 1terated filter, {.e., the approximate maximum 1ikelihood f{1ter
given by (14), (16), and (17) was also evaluated under the same conditions
as the conditional mean f{lter. Comparison of the average mean sguire er-
rors for the conditional mean and maximum 1fkelihood f1ltars showed no
discernible differencas. :

ROBUST SMOOTHING
A simplified robust, fixed lag smoother, wa2 derived in a similar
manner to the robust conditionel mean f{lter der{vation. We derive an ap-

proximate conditional mean, ELx(K)|Z¥*"] of the density pﬁé(k)li:*"g u:1n9
n the deri-

vation of the robust filtar. The robust smouthed estimata is given by

T T
Doty 8 OH (k+§) . 2 -
I ( k:j. k/ v Zi!til.ﬂi!ti)‘!!*!lk )
=) k+d k+J (18)
In obtaining (18) the fixed lag smoother has baen greatiy simplified by leav-
ing out the state noise in the forward interval. x(kjk) in (18) is the ro-
bust f{ltared estimate described by (13) and (14). Skerd is a robust measure
of dispersion of the residuals, z(k+j)-H(k+J)x(k+j|k=1). Severs) possibi-
1it{as exist for computing a usetul dispersion measure, ’k+J‘ The simplist

method and the one used to obtain the smoother evaluation given below is te
make Skeg 8 constant Skej * Sk and then compute 3, by (15).

X(k|k+n) = i(klk)wtnlk-l)J

ko




A Monta Carlo evaluation of the simplified fixed lag smoother was
performed using the same simulated trajectory as was used for the filter
evaluation. Measurement noise having a standard deviation of 50 feet was
added to the simulated positions. The measurement noise standard devia-
tion was unknown to 'the smoother. The forward smoothing interval had a
length of n = 20 which represants a one second smoothing time. The out-
T{er proportions and run lengths wers the same as for the filter eval-
gation. t: sample size of ten was used for the Monte Carlo evaluation of

e smoother,

Figures 5§ and 6 display the average rms position and velocity esti-
mation errors cbtained using the robust, fixed lag smoother with the
Hampel ¥ functions, Ha (2, 3, 4) and Ha (4, 4, 4). Also noted in fig-
ures 5.and 6 {s the ideal average rms values which were obtained using the
smoother with no outliers and a known measurament covariancs, Rk = 2500.

The robust smoother using Ha (4, 4, 4) is regrnscntative. except for the
measuremant of o of a conventional way of handiing outiiers in an opti-

mal smoothing application. We nots that either of the smoothers offars
good protection from very larga outliers but that Ha (2, 3, 4) results in
a significantly smaller estimation error when small outliers are present.
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ROBUST FILTERING USING GAUSSIAN MIXTURES

. Robust estimation methods deweight and/or reject ocutlying observations
by spacifying observational densities or pseudo-densities having 1on?.
heavy tails. We can also realize 2 loni. heavy tailed dansity b{ using a
Gaussfan mixture. Suppose we replace p(z(k)|x(k)) in (7) or (12) by the
Gaussian mixture pseudo-density,

B2} x(K) + £ agh(z(k) = H(IX0E) = o)y Ry) L)

where

N2k = HiRa(k) - al), r) o' &'—sz)EXP{-(z(k) - H{k)x (kY - £{’)‘/zakl
' (20)

We do not require that la ® 1. Thus, we have individual Gaussians cen-

tered at gz)and each hav1nx 3tandard deviation Rk‘ The sum in (19) may be
infinite. The locatfons, 4., and the amplitudes, 3y, Are free parameters.

Using (19) we obtain p(z(k)lzk'1) as
41
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plzlk) |21 « ; aiﬂ(z(k) - H(k)i(klk-1)-a£".H(k)P(kln-l)HTk)+Rk) (21)

In obtaining (21) we have again assumed that p(;(k)]ik'I) is Gaussian.

Substituting (21) into (8) and (9) with the varfance of the residuals,
H(k)P(k k-l)H{k)+Rk-replacld with an estimated value, skz. gives

X(k[L) = x(k[k-1) + pCklk-DHlk) (2(k) = MOOR(KIK-1DE)  (22)
_ Sy : :

In (22) i} 1s the weighted average

i-k - 1:"1.(1) (23,
where the weights W, are given by
‘- a (k) = RKIA(k[K-1) - akis 52) (24
?Jn(z(k) - H(K)x(k[k-1) = ag?) s, 2) _

The filter equations (22), (23). and (24) are identical fn form to the
simplificd pseudo-Bayes f1lter by Ackurson and Fu [7] for adaptive fi1ter-
ing when the mean of the measurement noise is unknown.

Using (10) and (11)
the conditional covariance is

. ’ 1 - ‘
2t = Pttt - pikle-nc0( ), - @8- B)oexieen zs

Sk
where

((1) _.) 1, I.U) .-k) (26)

Although the above sums may be thecretically infinite, we only need
to calculate the relatively few terms in the sums which have significant
values of the weights, Ni Thus, we compute only those terms in the sums
for which lz(k)wﬂ(k)i(klk-l)-aki)[/sk- 4, With this simplification the
aount of 2xtra computation required to implement this robust filter is
relatively smali. The locations, a£1 » produce a smeoth pseudo-dansity
{f they are chosen as zero and odd integral multiples of Sy akO) =0,

al!) = sgn(1)(211] - 1)s,, [1] 21, Ne have also tested the filter with

a{i) 1%, 1] 20. The value of the residual dispersion, R E

still camputed by (15). Several different choices of the amp)itudes have
bean t;; The most extensive tasting has veen done with ay * 1 and
(1] +

1). 42
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Some robust filters using the Gaussiarn mixture formulation were also
evaluated via Monte Carlo testing. These filters were tested using the
same simulated trajectory data and under the samz outlier and measurement
noise conditions as the robust filters using Hampel ¢y functions. The sam-

. ele size for Monte Carlo was twenty-five, the Markov transition probabi-
. 1ties were Py; = .05 and Py;2 = .5 and the measurement noise standard

deviation, which was unknown to the filter and estimated by (15, was JR:-
20 feet. Figures 7 and 8 present the average rms position and velocity
errors for a-Gaussian mixture f{l1ter with observations contaminated by
various magnitudes of outliers. The Gaussian mixture f{lters used in gen-

erating Figures 7 and 8 used ‘magnitudes of the Gaussians, a; = 1 (|1] +1).

Two different Gaussian mixture f17ters are represented in Figures 7 and 8,
one with Gaussians at all integral multiples of Sk and one with Gaussians

, ,at zero and odd integral multiples of Skev o

; Fig 8
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Each Gaussian component of P(z(k)[zk 1) has standard deviztion S+ There e

ii is very little difference in the estimation errors cbtained for the two
b filters of Figures 7 and 8, The filter with Gaussians at only the odd
multiples of Sy {s computationally less complex. Figures 9 and 10 give

the results of the Monta Carlo evaluation of a Gaussian mixture filter
which places Gaussians at zero and odd integral multiples of Sk with ampli-

tudes, a, = 1. C e
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This filter appears to give somewhat smaller errors than the other Gaus-

} sfan mixture filters and also slightly smaller errcors that the robust

f fi1ter which uses Ha(l, 2, 3). We note that using a, = 1 with Gaussians :
ﬁ : at all integral multipies of s, does not result in a useful filter since ..
: ;

& it has a zero influence function and therefore does not produce any error
correction. 43




CONCLUSIONS

Two methods based on M-estimatas have been presented for robust filte
ering and smoothing, one using the Hampel ¢ function with various break-
points and the other which models the observation error as a Gaussian mix-
ture. These robust fi1tsring methods were subjected to a Monte Carlo
svaluation using similated trajectory data from an aircraft tracking ap-
plication. The results of this avaluation show that both of thase robust
f{1tering methods give a significant reduction in average rms estimation
error for small outliers compared to a more conventional way of troat1:g.
outliers in an optimal f{ltaring application. The tasts 21so suggest that
the Gaussian mixture robust f{1tar methods offer the most promise for ap=-
plication and future testing. Further evaluation of robust filtering
methods under more severs trajectory applicaticns are necassary.
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COMPQUND FREQUENCY DISTRIBUTIONS

A METHOD FOR ESTIMATING STATISTICAL
PARAMETERS FROM AN ADULTERATED SAMPLE
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“ﬁ ; ABSTRACT, When a sample is contaminated by extraneous "outliers",

g ? computation of the higher statistical moments may contain large errors. The
proposed method treats these '"outliers'" as members of another 'unwanted"
population, and assumes that they perturb the distribution minimally near

_ 2 : the maximum ovdinate (mode).

The distribution is studied only near this meximum ordinate. A simple

s i
TSR L

curve (a parabola, say) is fit by the method of least squares and the various

derivatives are evaluated at this maximum ordinate, Not only the usual statis-

NNttt T

tical parameters (mean, variance), but also the proportional number of "outliers"

RSP

a : turn out to be expressible as simple functions of these derivatives,

I. THE PROBLEM

N Statistical analysis usual’y requires that certain a priori assumptions
{ be made; e.g., a certain population is normally distributed. From time to time,
?ﬁ however, a test will reveal that a sample has been drawn which is incompatible
with the basic assumptions.
An example which quickly comes to mind is the distribution of aerial

bombing scores. For many samples, the assumpntion of a normally distributed

population appears to be invalid -- frequency in the "tails" is far too high.

1 Lo
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Before abandoning the postulation of normality, let us address the
problem from a different point of view, Keeping the example of aerial
bombing scores, suppose that in a sample of, say, 100 bombing runs, the
bombardier misidentified the intended aiming point on ten occasions. It
is obvious that only 90 scores will be drawn from the "correct" population
(i.e., the population for which we have postulated normality), while the
remaining ten will come froﬁ populations with displaced means. To choose
terminology, we shall say that the sanple ls adulterated by the ten runs
from unwanted sources.

How the density function is affected by mixing different populations
is seen in Figure I. The lower curve is simply the normal curve in which
o w1 and N = 100, Adding adulteration from two extraneous populations
(0 =m1,u= =2, N w20, andom 1, y = 2, N = 10) yields the density function
for the compound frequency distribution, illustrated by the upper curve.

It is apparent at once that the ''tails" are abnormally thick, It should
also be noted that the density function is deformed least near the mean.

If the mean of the extraneous bits of data is displaced by much more
than 20 , the effect on the center of the sample distribution is virtually
nil, Can the parameters of the desired population be recovered by studying

the sample distribution only near its center?
II. A SOLUTION

The probabllity density function of a standardized (U = 0, 0 = 1) normal
distribution is given by

-1/2 12
p (Z) = B S
/2T

46
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Differentiating, we find that

@) m =P o “M2ZP

/
Y
. G
2 ' 2
; P (2) = 22 -1) o -1/272
: T
Evaluating these expressions at the maximum ordinate, we find that

Z=90

1
g (0) -
—

v

¢ P (0) = 0

. pn (0) = 2
“ N

Expressing p# (Z) in series form,

1 22 Z4 zt 2!
n(ZJ L} 1 - * - + - sse
- [: -+ —-— -t uT

It is easy to see that for small values of Z -- say |Z|<0,4 -~ the first two terms

ﬁ form a sufficiently good approximation. Note that for '
a 2 g
. p)e—o [1-F] amdzano, |
1 VI ‘
1 |
g P2y - - —E
t /o

p(2) = - —
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p(0) = —
'
p' (0) = 0
Pt (0) = - —1-
1

In other words, at the point of the maximum ordinate (Z = 0), the approximating
parabola and its pertinent derivatives take on exactly the same valuas as the

probability density function,

Since § (Z) is a probability function,

f 0@ a-1.

In an actual case, & sample of size N will be drawn, consisting of N values

of the form Yy

Rach yy can be thought of as a deviation about a certain origin; i.e., as

an abscissa, Since each yy occurs with frequency 1, we have imnediately

N
£(y;) = 1 and 1zlf(y1) . N,

Let us make two assumptions -- first that the desired population (call it the
"Z population") is normally distributed .- second that the extraneous members of the

sample are clustered about points far enough removed from the mean of the Z popu-

lation that the frequency distribution is minimally perturbed near the center.

Let Nz denote the number of members of the sample which are drawn from the

desired population. Let y and g be, respectively, the mean and standard deviation

of the yi's of this Z population. Then

L9
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Z. -L;—L is the standardized variable,

allowing our previously developed expressions in Z to hold, Note that

[}
1 Y=
z d nm— J = .
_‘{p()z-lcn 5 &y = 1 |
i f If we could identify the members of the Z population, we could
: “s‘. l determine
‘i , N, = )z: f(yi)
- : i
i
merely by counting., This cannot be done, But we note that |
“fi N
_ I =
b - g P (OLE) dy = N, {
choosing to regard y (without a subscript) as a continuous variable, and thus :
: considering £(y) as an ordinate rather than as a frequency, we find, :
. v
i f N N - - 2 H
4 : ovIr }
4 i {
¢ S M) PR | :
o £1(y) = —t e " gl @
','i o? VIR “
",l 1 "Nt 2 2 _’
1- ; f" (y) - 1 - u'- - - .
S o' VI [‘ ( y )] O
}
| a
_ ; |
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Evaluating these at the maximum ordinate (y = P)' wve find that

Ny

rV:‘V

£ ® -

i."‘
ll‘.
fl £ () = 0
:

i o (i) -

a'3-\]2‘rr

} Solving for Ny and & yilelds two fundamental expressions.
; L@

¥ o =

: " (@

? 2 3

Nl - - " (i)

For actual computation, the form

Ny = o f (V) -\/zrr

may be preferable.
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It remains to avaluate the mean (¥ 1a the bast estimate of U) and the values
of the function and its second darivative at that point, For this we use
the approximating parabola (lesast squares fit #),

£1(y) = K, + Ky + Kyy2

.'
l
1
i
|

M"(y) = 2‘2

i ; Since £$'@) = 0,

i | y-_

i | %,

i !

: _ amd £ = K - K, 2

E;-;- “*,

2
& 0f course ") « 2K, .

} The reader is reminded that the form of the distribution is salected
| from criteria pthar than the appesrance of the raw data. For example,
a distribution which follows (Appendix A, Table 1, Figure II) appesrs to

be tri=modal, dus to the presence of many extrarsous outliers,

*Sec Appendix A

52




S it @

RTTR T E es i E

e TR

e

TR ST

B P o) Horwre mar.aane

AIPRNDIX A
A SDOLIFIZD METHOD FOR FITIING A PARARQLA.(LEAST SQUARES)

The application of the method of least squares is greatly facilitated
by transforming the independent variable so that its transforu has a mean
of 0 and an increment of 1. By way of illustration, in Tabla 1, y is the

independent variable, £ its frequency and x its transfomm.

-

xl = ! ; g‘ 'Y d‘y - 3 G’x

In terms of the transformed variable x, since $ x, m -1 o

(m is any positive integer),

B(x) = Ay + A x + A%
e S x?
A, w | SaPr i
&1 3 x?
S S
A - Z xf
1
Z x?
21 Zt ‘
Ny i@ Z ot
p b3 x?
Z x2 .4 x
Table 2 contains numbers useful in computation.
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TABLE 1
ICAL SANPLE DISTRIBUTION

A

;(y)

98
144
75

-14
-24
-15

-?
-6
-5

~4

12
15
i8

S e et —ime
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e
pre— .

t
‘
\
f
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rar ey mmbo
ch s e

98
64
635

-9
-4
=4
0
5
4
]
0
10
6
14
8
=17

-3

-2

«1
0
1
2
3
4
5
6
7
8
54
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E

24
27
30
33
36
39

21
42
45
48
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TABLE 2
SUMMED SQUARES AND FOURTH POWERS WITH OTHER USEFUL NUMBERS
%1 %xz %x"‘ *D
-1 al ad
5 10 34 70
7 28 196 588
9 80 708 2772
11 110 1958 _ 9438
13 182 4550 26026
15 280 9352 61880
17 408 17544 131784
19 570 30666 257754
21 770 50666 471086
23 1012 79948 814660
25 1300 121420 1345500
J1 §x2
L ox2 ] xb

= 3.141 592 654

= 6.283 185 307

V2t = 2.506 628 275
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i
r"; Suppose it is desired to fit a parabola to the 9 central points (Table 1).
1 = 4, Zf = 20, Zxf = -2, Zxf = 70,
4
b 20 60
o A, = 170 708 - _9960 - 3,593 074
- 2772 2712
% A =  "2/60 = -0,033 333
-
i , 9 20
o A, = _leo 170 - _=570 = -0.205 628
? 2772 3772
; —
t x = "M = -0.081 053
Yy = 23,75 84

2
R = Ay - M e as0s a2

4,
g" (x) = -0.411 255
o = X - 2.95637

X 8" (';’

- 8.86011
%

N = .;g(x) ‘VZW = 26.64 or 27

]
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APPENDIX B
THE_ERROR TINDUCED BY ASSUMING A PARABOLA TO APPROXIMATE A NORMAL CURVE ;

With no prior knowledge of the value of o, it usually happens that E

rather large values of _y -1  are used to fit a parabola (1.38 in
o
illustration in Appendix A). When this happens, the computed values of Ny

and o will be too large. 22/2
Table 3 shows the error induced by the approximation 1 —_gi = e
2 L ]

The tabular values give the error as a proportion of g(X), the maximum

ordinate (6 = 1).

1f the mean and varianca can be estimated (and the first parabola fit

will provide a rough estimate), the error at each value of the indepandent

variable can be computed. If these error terms are subtracted from the
corresponding frequencies, a parabola fit to these 'corrected frequencies"
will exactly reproduce the desired parameters with no residual error
(except that induced by errors in the estimation of u and o).

Although the correction function is exact, it should be remembered

that on the normal curve there are inflection points at + o, outside of

which the parabola and normal curve diverge very rapidly. This makes
corrections computed for points outside o depeﬁdent upon accurate estimates
of p and 0. For example, a 5% error in the esrimate of o will result in

a correction error at 0.5 o of only 0,3X of the maximum ordinate, but
3.2X at 1.2 o -~ a tenfold increase.

The histogram of the data from Table 1, with the best-fitting normal

curve and associated parabola is illustrated in Figure II,
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| i TABLE 3 e 2% - [1 - 3 22 ]
1 :
8 i Log2 2 L 2
4 it z o7 2 1 -2 pise 2 o7 ¢ 1- & Diff
! b L - 2
3 P 0.00  1.0000 1.000  .00000 |l 0.70  .78270  .7550  .02770
7 L 002 .99980 .9998  .00000 || 0.72  .77167  .7408  .03087
. : 0.04  ,99920 .9992  .00000 || 0.74  .76048  .7262  .03428
a ¢ 0.06  .99820 .9982  .00000 || 0.76  .74916  .7112  .03796
i ¢ 0.08  .99681 .9968  .00001 || 0.78  .73771  .6958  .0419l
Lt )
- 0.10  .99501 .9950  .00001 || 0.80  .72615  .6800  .04615
A 0.12  .99283 .9928  .00003 || 0.82  .71448  .6638  .05068
f 0.14  .99025 .9902  .00005 || 0.84  .70272  .6472  .05552
o 0.16  .98728 .9872  .00008 || 0.86  .63087  .6302  .06067
e 0.18  .58393 .9838  .00013 || 0.88  .67896  .6128  .06616
‘i .
1 : 0.20  .98020 .9800  .00020 || 0.50  .66698  .5950  .07198
q; : 0.22  .97609 .9756  .00029 || 0.92  .65495  .5768  .07815
. : 0.24 97161 .9712  .00041 || 0.94  .64288  .5582  .08468
i : 0.26  .96676 .9662  .00056 || 0.96  .63078  .5392  .09158
: 0.28  .96156 .9608  .00076 || 0.98  .61866  .5198  .09886
! 0.30  .95600 .9550  .00100 || 1.00  .60653  .5000  .10653
¥ 0.32  ,95009 .9488  .00129 || 1.02  .59440  .4798  .11460
3 0.34  .94384 .9422  .00164 || 1.04  .58228  .4592  .12308
3 0.36  .93725 9352 ,00205 || 1.06  .57018  .4382  .13198
q 0.38  .93034 .9278  .00254 || 1.08  .s5811  .4168  .14131
A 0.40  .92312 9200 .00312 || 1.10  .54608  .3950  .15108
; 0.42  .91558 9118 .00378 || 1.12  .53409  .3728  .16129 |
(I 0.44  .90774 .9032  .00454 || 1.14  .52215  .3502  .17195 |
S 0.46  .89960 .8942  .00540 || 1.16  ,51028  .3272  .18308 |
S 0.48  .B9119 .8848  .00639 || 1.18  .49848  .3038  .19468 |
S 0.50  .88250 8750  .00750 || 1.20  .48675  .2800  .20675 |
. 0.52  .87354 .8648  .00874 || 1.22  .47511  .2558 21931 !
: 0.54  .86433 .8542  .01013 || 1.24  .46357 2312 .23237 |
| 0.56  .85488 8432 .01168 || 1.26  .45212  .2062  .24592 |
3 0.58  .84518 .8318  .01338 || 1.28  .44078  .1808  .25998 |
1 0.60  .83527 .8200  .01527 | 1.30  .42956  .1550 27456 |
0.62  .82514 .8078  .01734 || 1.32  .41845  .1288  .28965 |
0.64  .81481 7952 .01961 || 1.3¢ 40747  .1022  .30527
0.66  .80429 7822 .02209 || 1.36  .39661  .0752  .32141
| 0.68  .79358 7688 .02478 || 1.38  .38589  .0478  .33809 .
] 0.70  .78270 7550 .02770 || 1.40  .37531  .0200  .35531 i
: I
A !
' v
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f
;; Interpolation in Table 3 can be avoided by choosing values of ¢ and .
p such that
| 1 «  0.02 K
i T
3
ﬁ%‘i " = 0.02 R'
E\‘ o r f
f
2 (R and R' are intagers). q
This 1is a reasonable procedura; since the f£irst estimate of L {
\! probably is too high, it is legitimate to choose that lower value which 3
3 serves the purpose. Table & is presented for conveniance in choosing ‘
. f ;'
, Application of ths correction technique to the sxample of Appendix A _
' is shown in Table 5 and following. ' f.
§
g
|
;
i
§
: 60 _'_[0

- .. . L T s
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TABLE 4

[N

VALUES OF o, WHICH YIELD CLASS INTERVALS OF .02R

ot g T S
TR e T e T S
Q
Q

2

" ke

! % 02 - 50 .32 3.125 %
5 % .04 25 .34 2.94118 %
E % .06 16.66667 .36 2.77778 ﬁ
2 f .08 12.5 .38 2.63158 P
; .10 10 .40 2.5 ]

| 12 8.33333 .42 2.38095 :

: 14 7.14286 .44 2.27273 ]

.16 6.25 .46 2.17391 :

.18 5.55556 .48 2.08333 ;

.20 5 .50 2 ‘

it

.22 4.54545 .52 1.92308
.24 4.16667 .54 1.85185

Y ot T T T

.26 3.84615 +56 1.78571

v
5

b
i

.28 3.57143 .58 1.72414

<
. B . 2 S i 8 S S il e m

: .30 3.33333 .60 1.66667 i
k i
i
1 v
%-.;- £
! 3
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CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

y £(y)
12 0
15 3
18 2
21 4
24 2
27 5
30 2
33 2
36 0
) 20

X

-4
-3
-2
-1

L 7 B S

X = X

Iy

-1.42
-1,06
-.70
-.34
.02
.38
.74
1.10
1.46

From Appendix A, we have

x = -0.081 053

g(x) = 3.594424

gy * 2.95637
l/ux = 0,338

TABLE §

Factor

.13198
.02770
.00164
00000
.00254
.03428
. 5108

for correction, set 1/0x = 0,36

Af

-0.47
=0.10
-0.01
-0.00
-0.01
-0.12
-0.54

-1 025

Then 0.36 X = -0,029, set 0,36 X = -0.02

f+af

2,53

1.90
3.99
2.

4.99
1.88
1.46

18.75

LI PR A Y N

x(£+Af)  x2(f£+Af)

-7.59 22.77 \

-3.80 7.60 )
-3.99 3.99 ;
4.99 4.99 ;
3.76 7.52 |

A

4,38 13.14

e !
-2.25 60,01 i

ne

. A o
A B e TR
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4 o
i 3
" £
] y 4 “'l
b SO
4 It is observed that for x = <+ 4, the entering argument lies outside the
! .h\"ir,‘
£
% ¥ range of Table 3. This merely means that tha original curve fit spanned
i% tou much data., The values for x = + 4 are simply droppad from further

calculations.

Fitting a parabola to the '"corracted" frequencies, we fiad

BT A TN R T

- 18.75 2a|
i Bob =~ 160,01 196] = _1994.72 = 3,39238
£ 588 588
; By = _=-2,25_ = -0.08036
. 28
' l 7 18,75
By = _128 60,01 - _-104,93 = -0,17845
588 588
x = =0,22515
’ Y = 23,32455
i "' g(®) = 3.40143
; ! g'(x) = -0.35690
y ;
,'_ o = 3.08713
; 1
- ‘» o, = 9.26138
: Y
2 N = 26,32 or 26
& | 1w 0,324 , let 1 = 0.32
_ o x Gx
0.32 x = -0.072 , let 0.32x = -0.08
3
:‘
63
i et BRI L it - 4+l I 25 waibh b L 54 \.u-aumm“i;um‘w".‘ "’-‘;.:"-‘ oy
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o

The consequence heare of dropping the data for x = 44 is that rarity,
too small an estimate of & . Another ituration seems in order., See

Tables 6, 7 and following

TABLE 6

FURTHER _CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

y 4 x~-X Factor Ag x F = x ¥ xz P
2 ¢ +Og

15 3 -.88 .06616 ~0.23 -3 2.77 -8,31 24.93
18 2 "'056 401168 -0-04 "2 1.96 "3}92 708‘5
21 ‘l "024 .000‘01 0. -1 l.l -‘h “0
26 2 0.08 00001 0. 0 2, 0 0
30 2 0.72 .03087 ~0,11 2 1.89 3.78 7.56
3 2 1.04 +12308 ~0.42 3 1,58 4,74 14.22
> 20 -0.81 19.19 -2.72 63,54

19.19 28

Co = 163.54 196| .1982.12 = 3.37095
588 588

C = _=2.72 = -0,09714

28 ,

f
7 19.19

Cp = 128 63.54] = _-92,54 = -0.15738

588 588

6k |
|
AR EEAR X VM b B AT AN i e "l:

by T SO TR R o B s e . L ~
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b e T S AP Sl

Bic oo

R

T

] ¥ = -0.30862
¥ = 23.07413
b g(x) = 3.38594

p'(X) = -0.31476

. i o T
e P e MR ¢ A M ARl SRR
% me

? o =  3.27981
e o = 9.83943
i o
! ; N = 27.84 or 28
f
: i 1= 0,305 let 1_ = 0.30
i ; o o,
;‘ h % X
j - -
é : 0.30 x =-0.093, let 0.3x = -0,10
|
! _ }
* S TABLE 7 ‘ §
3 FINAL CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION !
5 :
J y f X - X Factor Ag ¢ X xP x2¢
Ox
5 15 3 -.80 .04615 -0.16  2.84 -3 -B,52 25,56
¢ 18 2 .50 .00750 -0.03 1,97 -2 -3.9% 7.88
|
i 21 4 -.20 .00020 0 4, -1 -4, 4 !
3 [
W T
& 24 2 .10 .00001 0 2, 0o o 0 :
% 27 5 .40 .00312 -0.01 4.99 1 4.99 4,99 i
Ll i
i 00 2 .70 02770 ~0.09  1.91 2 3.82 7.64
i !
i 33 2 1.00 .10653 0,36 1.64 3 492 14.76 f

TSI

20 -0.65 19.35 -2.73 64,83

BRI

65
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19.35 28
D, = 2 6 . 3.36286

S A R et e S

Lot 23 = -0.09750

il el AR e 4

7 19.33

64.8 = «0.14964
588

=4
~
| ]

e
ot N4

B e o

X = -0,32578

y = 23,02267

4
4
:
F,
3

g(X) = 3,37874

g'(®) = -0.29929

o = 3.35996

' ]
4 .
& d& = 10,07988
. g
; N w 28,46 or 28
* Check! }
1 = 0.298 »
a
x ]
- A
0.298 ¥ = -0.097 ]
. 66
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APPENDIX C

i‘ EXAMPLES

To test the method,three samples of size 150 were drawn from Rand's

Table® of Gaussian deviates and were adulterated as described.

LR R e Sl e

ety

- Problem 1
:i Sample starts with line 2206, Page 45
4 First 100 numbers unbiased

- Next 35 numbers biased +2.5

?g Rext 15 numbers biased -2,0

g Class interval was chosen as 0.3, yielding the sample distribution displayed

in Table 8, For the population, p = O, ¢ = 1, The "pure" portion of

the sample (N = 100) estimates thase parameters as p = 0,015, oo = 0.943,

_é The total sample provides the useless estimates n = 0,332, o = 1.579

The curve-fitting technique provides a first approximation of u = 0.059,

i e 1

3 o = 1,025, N = 109, After applying the corrections, the method yields

f ju w 0,062, o = 0,920, N = 99, Computations are shown in Tables 9,

a 10 and following.

#The RAND Corporation, A Million Random Digits with 100,000 Normal Deviates,

Free Press, 1955.




TABLE 8 ;
PREQUENCY DISTRIBUTION, PROBLEM 1 %
Frequency Frequency ’
y Unbiased Total y Unbiased Total :
Mid-Point x Portion Sample Mid-Point x Portion Sample R
-4.5 -15 1 0.3 1 14 14 {3
: -4.2 -14 0 0.6 2 10 11 %
§ 3.9 -13 0 0.9 3 8 8 ;ﬂh
é -3.6 -12 1 1.2 4 8 14 e
i -3.3 -11 0 1.5 5 3 7
] -3.0 -10 2 1.8 6 0 4
{: -2.7 -9 0 2.1 7 2 5
¥ -2.4 -8 2 2.4 8 1 4
-2.1 w7 2 3 2.7 9 5
-1.8 -6 3 4 3.0 10 2
-1.5 -5 3 7 3.3 11 2
-1.2 -4 6 8 3.6 12 2
-0.9 -3 7 8 3.9 13 2
-0.6 -2 9 9 4.2 14 0
-0.3 ~1 12 12 4.5 15 0
0.0 0 12 12 4.8 16 1

68
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i ]
i
k!
. TABLE 9 i
| CURVE FIT, PROBLEM 1
W
*
: y £ x xf x®f
; -.9 8 -3 ~24 72
-.6 9 -2 -18 36
-3 12 -1 -12 12
0 12 0 0 0
4
6 11 2 22 44
9 8 3 24 72 :
> 74 6 250 . L
j :
. _ 74 28 »
L - 196 = 12,76190 .
¥ . ho 588 E
A =  6/28 = 0,21429 Y
v Ly A
A - 28 250/ = -0.54762 B
588 :

x|

= -A}/2A; = 0,19565

£G) = A, -A2/4a; = 12.78287
O = 3.41633

To compute corrections

/6y = .293, Use 0.32

0.32 X = ,063, Use 0.06

y = 0.05870

dy = 1.02490

N, = 109

69




TABLE 10
CORRECTED CURVL PIT, PROBLEM 1.
y £ x - X Factor Pay g x xg x*g
Ox
] ; -9 8  -1.02 11460 -1.46  6.54 -3 -19.62  58.86
K ‘
4 -6 9 - .70 .02770 -0.35  8.65 -2 =17.30  34.60
3 -3 12 -.38 00254 -0.03 11,97 -1 -11,97  11.97
i 0. 12 - .06 00000 0. 12, o 0 0
E 3 1 .26  .00056 -0.01  13.99 1 13,99 13,99 :
p 6 11 .58 .01338 -0.17  10.83 2 21.66  43.32 .
: -9 8 l9° -07198 "0092 7008 3 21.24 63072 : 2
4 S o -2.94  71.06 8.00 226.46 b
.
71.06 28 g
B, = |226.46 196 - 12.90286 -
] 5 .
;‘_ By = 8.00/28 = 0.28571
7 71.06 !
N | B, = 128 226.46 =  -0.68786 ‘-
i 588 .
1““‘ I
4 | X = 0,20768
‘3
¥ = 0,06231
\ gX) = 12,93253
y o = 3.06604
\i @ = 0.91981
y N = 99.4 or 99
1 Check:
3 1 = 0,326
i O x
1 0.326 x = 0,068
70 ’
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PROBLEM 2

Sample starts with line 5622, Page 113. All other conditions identical to
Problem 1. Resulcs are shown in Table 11, 12 and 13 and following. The
"pure" portion of'ﬁhe sample yields po- 0, o = 0;915: The total

sample gives j 0.426, & = 1,728,

The curve-fitting technique provides a first approximation of p = -0,101,

o = 1,011, N = 112, After applying the corrections, the method yields

}I bl "0.106, o = 0-908. N - 1024
TROBLEM 3

Sample starts with line 8371, Page 168, _All other conditions identical to
Problems 1 aud 2. The "pure" portion of the sample yields p = 0.102,

o = 0,961, The total sample pives p = 0.386, o « 1,508.

The curve-fitting technique provides a first approximation of p = 0.123,
o = 1,230, N = 136, After applying the corrections, the method yields
po~ 0132, > -~ 1.109, N = 123, Results are shown in Tables 14, 15 and
16, It should be ohserved that thia particular sample contains 5 "bad"
data bits in the interval |x] s 0.6, more than 8% of the sample. The
method cawnot identify these points, with the result that the computec
values of N and o tend to he too large,although they are still better

estimates of the true parameters than those obtainable from the entire

sample.
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TABLE 11
FREQUENCY DISTRIBUTION, PROBLEM 2

Frequency Frequency
y Unbiase Total y Unbiased Total
Mid-Point x  Portion Sample Mid-Point x  Portien Sample
-3.9 -13 2 0,9 3 ) 8
~-3.6 =12 1 1,2 4 11 12
-3.3 ~11 0 1.5 5 2 3
-3.0 -10 1 - 1.8 6 3 7
-2,7 -9 Q 2,1 7 1 3
-2.4 -8 1 s | 24 8 4
-2.1 -7 0 2 2,7 9 1
-1.8 -6 1 1 3.0 10 1
| -1.5 -5 3 3 3.3 11 7
| 1.2 -4 9 12 3,6 12 4
% -0.9 -3 6 8 3.9 13 - 4
| -0.6 -2 11 1 4.2 14 0
-0.3 -1 18 18 4.5 15 1
0. 0 11 12 4.8 16 0
0.3 1 8 9 5.1 17 0
0.6 2 9 10 5.4 18 1

' | 72




y

E_ 12

VE F OBLEM _ 2

i o - S

: y '
E. Mid Point 3 f xf x“f

e e i

-0.9 -3 8 ~24 7
-4 ﬂ -0.6 -2 11 “22 W
-0.3 -1 18 -18 18

0. 12 0 0

0
| 0.3 1
‘ 0.6 2 10 20 40
| 0.9 3
L 76 -11 255

R N R e

| , 76 28
: | - 1255 196 = 13.19048
o 580

. M -11/28 = -0.39286 l;

. { Ay = 128255 = ~0,58333 1
§ 588 ;
‘ ‘ X = -0.33673
4 | £(R) = 13.25662
A#? ok = 3.37088 §
M;? ; To compute corrections, {
y = 0,297, Use 0,32 i

2% = -0.108, Use -0,10
= -0.10102
= .1,01126

B W gt =5

= 112

Uitk A B

i AT
i e s e
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E_ TABLE 13 $
i ¥IT, PROB 2 i
| !
y £ x~-X Factor At g x xg ng !
t (.
; x . 1
i -9 8  -.86 .06067  -0.80 7.20 -3 -21.60 64.80
| a
-6 11 -5 .00013  =0.13 10,87 -2 -2L.74 43.48 i
| ' A
: -3 18 =22 .00029 0. 18. -1 -18, 18. ]
|
0, 12 .10 .00001 0. 12. 0 0 0 ;
g 39 42 .00378  -0.05 8.95 1 8.95 8.95 f
| 6 10 .74 .03428 0.5 9.5 2 19,00  38.20
i 9 8  1.06 (13198 -1.75 6.25 3 18.75 56.25
: 1
. T 318 72.82 14,56 229.68 |
i | 72.82 28 !
; B, = l229.68 196] = 13.33619 ;
‘ 588 |
~
i 7 72.32‘ |
" B, = Izs 229,68 = -0.73333
588
( \ x = =0.35406
% | 7 = -0.10622 i
‘ g = 13,42812 '
‘ ox = 3.02581 ;
o = 0.90774 3
N = 101.8 or 102 h
Check: l\
1 = 0.330 |
Ox

R Py "
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TABLE 14 -

U T SR L

FREQUENCY DISTRIBUTION, PROBLEM 3

~ Frequency Frequency

y Unbiased  Total y Unbiased Total 3

Mid Point x Portion Sample Mid Point x Portion Sample

-3.0 -10 2 1.2 4 6 9

-2.7 -9 1 1.5 5 3 4 j'_._

-2.4 -8 1 1.8 6 2 4

-2.1 -7 1 4 2.1 7 1 6

-1.8 - 6 3 3 2.4 g 0 6

-1.5 -5 4 5 2.7 9 2 6

-1.2 - 4 3 6 3.0 10 4

-0.9 -3 8 9 3.3 11 5 '

-0.6 -2 9 11 3.6 12 0

-0.3 -1 10 11 3.9 13 1 3

: { 0.0 0 13 14 4.2 14 0 _"
: 0.3 1 13 13 4.5 15 0 1
0.6 2 12 13 4.8 16 2 1
_ 0.9 3 10 10 5.1 17 0 '
.

E
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TABLE 15
VE FIT, PROBLEM 3

y 4 x xf x3¢ xop Factor At
! ; %
; 5 -9 9 -3 -27 81 -.96 ,09158 1,21
2 -6 11 -2 ~22 4h -.68 02478 -0.33
; % -3 1 -1 ~11 11 -.40 ,00312 -0.04
a 0. 14 0 0 0 -12 ,00003 0.
; .3 13 1 13 13 .16 .00008 0.
.6 13 2 26 52 .44 00454 -0.06
.9 10 3 20 90 .12 ,03087 -0.41

8l 9 29 -2,05

™M

N . 81 28
' : A, = J291 196 - 13,14286
| 588

A = 9/28 = 0.32143 '

Cape B

7 81
Ag = ]28 291 = -0.39286
588

NPT

X = 0.40909
£(x) = 13.20860
o = 4.10012

¥ = 0.12273

gy = 1.23003 .
N = 136 .

To compute Af—. use : /}

'_1.‘. - 00 28
%

'1/0- = 0.12

. v4#"&’)‘??"&{&;’:1’-"'.& T
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TABLE 16
GORRECTED CURVE FIT, PROBLEM 3

y f ¢ = x xP x*9
t+Af
| -9 9 | 7.79 -3 o -23.37 70.11
| -.6 11 10.67 -2 -21.34 42,68
-.3 11 10.96 -1 -10.96 10.96
0. 14 14, 0 0. 0.
.3 13 13, 1 ' 13, 13,
.6 13 12.94 2 25.88 51.76
.9 10 9.59 3 28.77 86.31
) 18.95 11.98 274,82
78.95 28
B, = lz7a.az 196l - 13,23000
588

By ~ 11,98/28 = 0,42786

| 78. 95|
By 28 274,821 =-0.48786
T $88

X = 0.43851
£(x) = 13.32381
; 6, = 3.69533 >
¥ = 0,13155
@, = 1.10860
N = 123
Check:

1 = 0.2m
': Oy

plec = 0,119
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J

.

A Is the result affected by varying the span of dats used? Let ua
n' rawork Problem 3, using all the data up to Jy| = 1.8, Even though
the astimates of ¢ and n are poor, iteration of the method quickly
" puts data for |y|> 1.2 outside the range of the corrsction tahle, and
" ! so drops them from the calculations, The remalning 9 points, when

,\r properly corrected, should virtually duplicate the results earliar obtained
\l from fitting 8 curve t0 7 points. The results compare as follows:

B

9-point fit: p = 0,162, o = 1.096, N = 123

7-point fit: u = 0.132, o = 1,109 N = 123
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EABLE 17
13-POINT CURVE FIT, PROBLEM 3

£ x xf
3 -6 -18
5 -5 ~25
6 -4 -24
9 -3 -27
11 -2 ~22
11 -1 -11
14 0 0
13 1 13
13 2 26
10 3 30
9 4 36
4 5 20
4 6 24
112 22
1—}12 182’ = 12.53147
1009 4550
26026
22/182 = 0,12088
.l 13 112'
182 1004 = ~0.27972
26026
0.21607
12.54453
4.73533

xtt

108
125
96
81

44

11

13
52

90

144
100
144
1008

79

-1.36
-1.14
~.92
-.70
-, 48
-.26
-.04
.18
140
.62
84
1.06
1.28

A
9

T = 0.06482 '
6 = 1.42060
Yy

N = 149

Factor

+32141

«17195

.07815
.02770
00639
00056
.00000
00013
00312
01734
05552
.13198
+25998

= 0,211, Use 0.22

~4.03
-1.16
-0.98
-0.35
-0,08
-0.C1

-0.04
-0.22
-0.70
~1.66
-3.26
-13.49
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b red

¢ =
£+ At
-1.03
2,84
5,02
8.65
10.92
10.99
14,
13.
12.96
9.78
8.30
2,34
0.74
98, 51

6.18
-14.20
-20.08
-25.95
-21.84
-10.;5

0.

13.

25.92

29.34

33.20

11.70

4.44

30.72

x"

-37.08
71.
80.32
77.85
43.68
10,99

0.
13.
51.84
88,02

132,80
58,50
26,64

617,56

-1.62
-1.36
-1.10
-.84
-.58
-.32
-.06
.20
.46
.72
.98
1.24
1.50

TABLE 18
13~-POINT CURVE FIT, CONTINUED, PROBLEM 3

Factor

+32141
.15108
.05552
.01338
.00129
.00000
+00020
00540
03087
.09886
» 23237

80

o¢

-4,15
~1.95
-0.72
~0.17
-0.02

-0.07
-0.40
-1.28
-3.00

-11.76

A w2 W N = O

Fem
t+A0

0.85
4.05
8.28
10.83
10.98
14.
13,
12,93
9.60
7.72
1.00

93.24

-4.25
-16.20
-24.84
-21.66
-10.98
0.
13.
25.86
28,80
30.88
5.

25.61

21.25
64.80
74.53
43.32
10.98
0.
13.
51.72
86.40

123.52

25,

514.51
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98.51 182’.
1 B, = 617,56 45501 = = 12,9033
- 26026

By = 30,72/182 = 0,16879

13 98,51
182 617,56 = -0,3804095

2 - 76026

X = 0.22185 E

£Gx) = 12.92215

e = 42123 »
¥ = 0.0665 |
: o, = 1.2363 |
i N = 133
i’ 1 = 0.243, Use 0.26 -

"

Sl e

0.26 p = 0.058, Use 0.06 o

: 93.24 110 ' a

Co = J[514.51 1958| = 13,34688 o

g 9438 ! %

'lI , I;-.

L €1 = 25.61/110 = 0.23282 E

} | o

¢ 11 93.24 Iﬁ

b ¢y = luo siesl = -0.48705 B

5 5438 vl

E - : j

_ x = 0.23901 L

£CX) = 13,37470 )
6, ™ 3.70544 %

Yy = 0.071170 B

@ = 1.11163 1 3

.

N o= 124 L

.
3 1 = 0,270, Use 0.28 g

% |
% .28% = 0,067, Use 0.06 E

i 81
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Factor

«24592
.09886
02770
.00378
+00005
.00005
+00378
02770
09886

« 0.272, Use 0.28

.28 X = 0.122, Use 0.14

|
1
§ TABLE 19
k 9 POINT CURVE FIT, PROBLEM 3
xh g% 2 U
R 3 q, Factor AP £4AF xg x‘g 3,
iz
Fi
o -4 -1,18 19468  -2.60 3,40  -13.60  54.40 1,26
A -3 -0.90 07198  -0.96 8,04  -24,12  72.36  ~..98
i -2 -0.62 .01734  -0.23 10,77  -21.54 45,08 - ,70
{
;Q -1 -0,34  ,00164  -0.02 10,98  -10.98  10.98 - .42
3 0 0,06 .00000 0. 14 0. 0. - .14
'“& ‘ 1 0.22 ,00029 0. 13, 13, 13. .14
-4 2 0.50 .00750 -0.10 12,90  25.80  51.60 .42
1 3 0,78  .04191  -0.56 9,44 28,32  84.96 .70
i 4 1,06 .13198  -1.77  7.28 28,92 115,68 .98
A _ 5 1.34 Not Used
5 | I ~6.24 89,76  25.80 446,06
: ‘ 89.76 60 |
; | p » 144606 708 |, 3 37074
4 : v 2772
“. .
3 D, = 25.80/60 = 0,43000
2 9 89,76
3 D, = |60_446.06 | = -0.49461
g X = 0,43469 o, = 1.10267
‘% £(X) = 13,36419 N =123
B o, = 3.67557 1
| %x
2 y = 0.13041
% | 82
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Loatnef e Bl 'Jl:;LEE',}
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-1 5.
]

e 5

. '3.29

-1.32
-0.37
-0.08
0.
0.
«0.05
0,37
-1,32

-6.77
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% TABLE 20
§ 9 POINT CURVE FIT, CONTINUED, PROBLEM 3
?4 : X g*Zg xG x2G
! -4 2.71 -10.84 43,36
'3 7068 '23.0‘ 69-12
[
-2 10,63 -21,26 42,52 |
: -1 10,95 -10.95 10.95
: 0 14. 0 0
( 1 13, 13, 13,
; f 2 12.95 25,90 51.80
% ’ 3 9,63 28.89 86.67
A 4 7.68 30.72 122,88
g ) 89.23 32.42 440,30
% J 89,23 60 B
440,30 708
‘:; EO = k) = 13.26004
]
{ By = 32.42/60 = 0.54033 !
[%
[ 4
: i 9 89,23
; | B, = 150 _440.30] _ <004
; :
% X = 0.53835 Check:
B
i'sb - -
a £(X) = 13.40549 1 . 0.27
1 %
b o, = 3.65463 .
0274 X = 00148 :
§ = 0.16151 i

=1, 3
oy 09639

N = 123




Ty §4 Bt

: THE 1979 SAMUEL 8. WILKS MEMORIAL MEDAL
| ' Frank E. Grubbs

The Samuel S. Wilks Memorial Medal Award was initiated in

{ 1964 by the US Army and the American Statistical Association, ﬂ

and has been administered for the Army by the American Statistical s

Association, a non-profit, educational and scientific society

P AR o i i b
£

founded 140 years ago in 11839, The Wilks Medal and Award is

e

given each year to a statistician ~ and a top-notch one! ~ and
is based primarily on his contributions to the advancement of T
scientific or technical knowledge in Army statistics, ingenious
N application of such knowledge, or successful activity in the

| fostering of cooperative scientific matters which coincidentally i

i benefit the Army, the Department of Defense, the US Government,

1 and our country generally. The Award ponsists of a medal, with

.ﬁ _ a profile of Professor Wilks and the name of the Award on one

| side, the seal of the American Statistical Association and the
name of the recipient on the reverse side, and a citation and

i honorarium related to the magnitvde of the Award funds, which

‘Fi were generously donated by Phillip G. Rust of the Winnstead

é' Plantation, Thomasville, Georgia. Mr. Rust originally stimulated
the interest of Sam Wilks in distributional properties of the ; g
"extreme spread" (bivariate range), & measure of the "accuracy" ! f

of rifle shot on a target.

§ These annual Army Design = of Experiments Conference, at which I
.é the Wilks Medal is awarded each year, are sponsored by the Army i f
. Mathematics Steering Committee on behalf of the Office of the !'

Chief of Research, Development and Acquisition, Department of the

Army. : , I S St
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Previous recipients of the Samuel S§. Wilks Memorial Medal
include John W. Tukey of Princeton University (1965), Major
General Leslié E. Simon (retired, 1966), William G. Cochran of
Harvard University (1967), Jerzy Neynan of the universi'y of
California, Berkeley (1968), Jack Youden (deceased) formerly
of the National Bureau of Standards (l969), George W. Snedecor
(deceased) formerly of Iowa State University (1970), Harold
Dodge (deceased) formerly of the Bell Telephone Laboratories
(1871), George E. P. Box of the University of Wisconsin (1972),
H. O. Hartley (1973), this year's President of the American
Statistical Association, Cuthbert Daniel, private statistical
consultant (1974), Herbert Solomon of Stanford University (1975),
Solomon Kullback of George Washington University (1976), Churchill
Eisenhart of the National Bureau of Standards (1977), and William
Kruskal of the University of Chicago (1978).
This brings us up to this year, for which the competition

for the Wilk's Medal turned out to be keen indeed, and as usual

thoe "best man won". The members of the 1979 Wilk's Memorial Medal

Committee consisted of individuals skilled in the art of arguing
their points and getting their best views in the minds of others!
They were: Chruchill Eisenhart, Fred Frishman, Frank Grubﬁa
(Chairman), Bill Kruskal, Jeff Kurkjian, and frnnk Proschan.

They had the job of éoncentrating on some 12 deserving candidates
from many nominees, and coming up with their best selection ac-

cording to the Wilk's Medal criteria,

)
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The 1979 Wilks Medalist, like Sam Wilks, was born in Texas.

S
e

He received his B. A. in Physics (with highest honours) in 1934 ﬂ

from the University of Texas, and later his Ph. D, in Mathematics N
from Princeton University in 1940, in the first cohort of Wilks gf
disciples., Between 1934 and 1940 he taught as a graduate assistant !
or instructor at Brown University, the University of Texas, and A
Pcinceton University, while also during that period he made the ?g

transition from Physics through Applied Mathematics to the great

field of Mathematical Statistics. After obtaining his Ph. D. in

1940, he returned to the University of Texas as Instructor in Ap-

T e S

plied Mathematics and Astronomy, interrupting his academic carcer LN

to join the Bureau of Labor Statistics in 1942, and in 1944 a S

R T iiclan "ot

project of the Applied Mathematics Panel of the National Defense

=z

Research Council (I believe under Sam Wilks). Then from 1945 un- 4
til 1948 he was Professor of Mathematics and Statistics at Iowa (
{ State University, and then joined the RAND Corporation, where he
) served as Deputy Chief of the Mathematics Division until 1955, b
! At this point in time the entrepreneur emerged and the 1579 1
| Wilks Medalist founded the General Analysis Corporation, served 4
as its President until 1960, when it ﬁerged with CEIR, INc. He
then became a Vice-President of CEIR and Manager of its Western i
Division until 1964, when he next went to Washington as Assistant
Commissioner of Educational Statistice in the Office of Education.
He was then Director of the National Center of Educational Sta- !
tistics until 1967, after which he returned to the West Coast
as Frofessor of Administration and Director of the Public Policy

Research Organization at the University of California, Irvine.

e
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There is much, much to say about this scholar and gentleman
concerning his great contributions to the field of statistics
generally, although they should be recorded elsewhera. Wa should
note, however, that he wrote the best key graduate book for a
solid statictice course, and one which han trainad many good
statisticians. (Introduction to the Theory of Statistics). He
has baen a prolific pgblilhar of technical papers on statistics,
operations research, education and public policy research. He
has been Presidents of both the Institute of Mathematical Sta-
tistics and the Operations Research Society of America.

A long~term friend and colleague, George W. Brown, told me
that the 1979 Wilks Medalist is an "extraordinarily and decept-
ively quiet man", so that I don't think he would win an award -
as the "most talkative statistician"! Yet, he has exerted

major direct and indirect influences on an enormous number of

‘individuals. And he has had many separate carears actually,

including roles as a professor, a think-tank researcher, an
operations research analyst, an adminiztritor, an entrepreneur
and manager, a pioneering public servant, founding director of
an important research organization, and distinguished consultant
and advosor to universities and government org}nizationl.

By now it should be unmistakebly clear th;t we are raferring
to none other than Alexander M. Mood.,

32: iiﬁ:ﬁiﬁﬁrgﬁf ag;: ?g:dhi:a::;y significant contributions
to the theory of statistics, an outstanding textbook on the sub-
ject, his extensive applications to operations research and sys-

tems analysis, and unigue statistical assessments of education
and public policy research."”
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Variance Reduction in Monte Carlo Simulation

Mark Brown
Florida State University

_ Herbert Solomon
; . Stanford Univarsity
i

o Michael A. Stephens
: Simon Fraser University,B. C,

1.  Introduction.

Monte Carlo simulation is employed in a large variety of problems. i‘re-
quently, one is interested in the axpectation of a mnction s()&,...,x“)
wiere <%, 131> i 1,4.4. vith known dlstribution T ad N in s
l'boppilng time (often ¢ constant). The procedure followed is to generate
s large nurber of samples (x{“,..., (1)), iw1,2,,..,M, and estimate
the expectation of interest by : o

An interesting aspect of the simulation estimaetion problem is that
F 4= known. Thus functions of the form ‘(F'xl""’xu) can be employed
as estimators, while in statistical estimation problem with F unknown

{ camnot be computed from the date and is thus not considered to be an

estimator. Thus the class of estimators is considerably wider in Monte

Carlo problens.

One approach available to reduce the variance of the Monte Carlo

estimator is to find a function z(r,xl,...,x“) with the same expectation

ad g, and with smaller varieance. Then £ rather than g is averaged

over the M samples, Of course, [ = EFg fits this description but were

Partially supported under U.S. Army Research Office Grant DAAG-29-77-G-0031

. and issued as Technical Raport No. 35.




; it directly computeble one would not need to simulate in the first place.
. : Thus an important requirement of # is that it be simply computable.

We illustrate the above remarks by considering the problem of Monte
Carlo estimation of M(t) = EN(t), the expected number of renewals in
[0,4] for a renewal process with known interarrival time distribution P,
Several unbiased estimators which compete favorably with the naive estimator, 1
N(t), are presented and studied. _ 'I
1 %e believe that our approach and methodology, slthough only applied to ;
T; renewsl funotion estimation in this paper, can be useful in a large |

e e

Betiopatmiar br . LGB

variety of Monte Carlo simulation probleas.

: & Assume thet <X;, 431> 4is i.1.d. vith cdf F vhere F(0) = 0.
3 | Define B, =0, B, = ? Xyo 0w 1,200 ,N(t) = max(ne 8, < t}, and

] M(t) = EN(t), t > O, Scmetimes we consider the point t « O as & reneval
epoch, In this case we use Ny(t) = N()4L and My(t) w M(t)+l, The
reneval age at time t is defined by A(t) = b8y (4 Pr(A(t)=t) = F(t)
| and drf"z%) w F(x)aM(t-x) for 0<x<t, thus d.!‘ﬁ"fb n F(x)d.Mo(t-x)
g ! for 0<x<t

A : Dafine
i | 11r 8, <t
:3 bi -

f’ O if 8, >t

e

Than N(t) = ?51 and M(t)-l‘.? 5, = ; ) (s), where F) 14 the 1t \3

convolution of T, s

90 ' 4
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To estimate F(i)(t) = BB, e will use ;

B, [XyseeepX, o) = B(8, 18, ) = F(t-8, ) .

EE?
P

i :

b We then estimate M(t) bys . |
o o
y ‘ ® N(t )+ -’ E
i @) o) = E rtee ) e g reey) \ i 3
S\ ; n - . | I‘
i | b

gince Var(F(t-8, ,)) = Var(E(s,!s, ;)] < Var 8,, we have replaced | \

‘, each componaent, By, W component with the same expectation and ' i
smaller veriance. Intulitively we would expact that if we reduce the -;f,:‘
variability at each stage (fiven the past) then we should reduce ihe uf

Vi

variability of the overall estimator. Howsver, the computation of e

¥

variance involves covariance terms, and if these are incressed while
variances are denreased there can conceivably be an increase in variance.

Theorem 1 (below) demonstrates that MF(t) do¥s indeed have lover variance

than M(t).
Theorem 1. M’(t) is an unhiased estimutor of M(t) and Var N(t) -Vu'MF(t) .

Before proving theorem 1 we comment that the reduction in variance
is unsatisfactorily mmall for large t. If u, = EX° <« then
BI2M(A(t)) - P(A(t))] = Q(1), thus var N(t) and Var M,.(f.) are of the
form 7t + Q(1) with common 7, and we improvas only the asymptotically

|
i
!
B(2M(A(t)) - F(A(t))] > 0, with strict equality if F(t) > o. ‘}
l
|
|
!
negligible Q(L) term, Estimators considered in later sections do ,

congiderably better for large t.

i
o BRI -
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Proof of Theorem 1. Express u?(f.) as

t t
r(t) +f° P(tex)an(z) -j; F(t-x)dNo(x) .

Then

t b t
N, (6) -fo F(t-x )aM, (x) "v[o 1dM, (x) -L ¥ (tex)ad (x)

t
- Ky(t) j; ar{83) i (6)-1 = NCB)

. b
née) = [ P wadag e
+2 JJ F(tor )P (68 )AN, (r)A, (s-7) .
|

We evaluate this expression in several steps:

t t t
@ [ Pewnge - [ rewnge - [ reeonw
= M(t) - EF(A(E)) .

(41) P(tar)P(tes) = 1-¥(t-r) - F(tan) + F(t-r)F(t-s) .

(141) 2 _U ldMo(r)dHo(-r) -2 ]ot u(t-r)duo(r) - au(t)+au(2)(t) .
r ]

(iv) -2 f [ F(ber )aM, (r)aM, (s-r) = 2 f ¢ Ftor)M(t-r)an,(r)
r<as r0 f

= ~2EM(A(t)) .
92
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3 % (v) -2 r'[!n F(t-l)%(r)duo(n-r) n .afr:o !‘(t-?r)dno(r)

| . -2M(t) .

F ,

4

) : < t |

} (vi) 2 rj_;[' F(t-r)f(t-l)duo(r)dno(n-r) - EL.or(t-r)?(t-; yam, (r )

- 2MP(A(t)) .

|

,- Combining (i)-(vi) we obtain:

_ @) ) = uw) + 2 (6) - mEuas)) - piae)) .

Furthermore

‘. b

. | 3) Bf(t) - E[f 2a8(£)1%A M(t) + 2 ﬂ AM(r )aM(a-r)

: \ 0 r’<a

,5) - M(t) + 2u@) (g |
\;{ Thus from (2) and (3): ' ;_
;|
1 var N(t) - Var Mg(t) = E(2M(A(t)) - P(AL))] . |
1 |
h’ '
Bince .'
| © - Z
'% | M) = LrMa), ane)-pe) - vy v 2 £ W z0,
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g
i ghus E[2M(A(8)) =F(A(t))] 20 for o\l ¢ and is strictly positive
1‘ for F(t) > 0. n
4 1
: ,t"“
; 5. In this section we assume that F 1s continucus. The cumulative b
hazerd H is defined by H(t) = -log F(t). Waen F is absolutely ﬁ
contimous with density f then H(t) = [Sn(y)ey vhere h is the 1
Il hazard function, h(t) = %:—g- . :
§ our next estimator is based on the intuitive idea that !
! E(aN(s)|past) = aH(A(8)). Thus instesd of using N(v) = ,rg’ AN(s) we
' try q[
11 !\1
f ¢ N(g) N(6)+L i
M (6) -f AH(A(8)) = LUK, + H(A(Y)) = H )
\ 0 { 1 1 J
ki
, vhere H, = H( (t-li_l) A x,_] (vhere WA D = min(a,b)). }
¥ 0 . ® :
- Note thet N(t) = }f 8, vhile Mﬂ(t ) = g Hy Thus 8, is replaced ,:
» 8 | by H, esd E(@,[8 )= B(H |8, ;) = P(be8y )
:’}, The procest MH(t) is & oumulative process in the sense of Smith
5‘{ (3], Thus (Smith [3]) :
i :
v, |
¥ ‘ Var My(t) ~ & B(RQD) - R IPNE 3
| H a ‘-(
i

: vhere u = EX. But H(X) = -log F(X) 1s exponentially alstributed with

parsmeter 1, thum !
2 ;
2 ;
m[n(x)-‘%’ﬂx] -1+:'-l5-?§9-, )
! :
;! 3
i ‘
\‘] 9‘. |

. i
I

1 e

» .,«” k I.." - . b

— N - - R
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vhere p 1is the correlation coefficient between X and II(X) and o

is the variance of X. Thus MH(t'.) is asymptotically better than N(t)
for p > u/2c, asymnioticaliy worre than N(t) for p < /2.

In goheru:l. if we have two unbiased estimators of a parameter, Tl
and T, with covariance matrix A, then the minimum variance unbiased

estimator of the form QT + (l-C!!)'J.‘2 is the one with
2
Q= §1 Ald .
-1
)
1§1 Jalm

The variance of this estimator is

The idea now is to let A be the asymptotic covariance matrix of )|
ne) )
( y )
vE /%
arnd, to empley the above result to obtain an unblased estimator which
imoroves on both MH(t) and N(t) for large t. We already know the

O(t) terms for Var N(t) and Var MH(t). We only need the leading

term tor Cov(N(t), MH(t)). This is given in lemma 1 below.

Lemma 1. If 0_2 is finite then

Cov(N(t), My(t)) = & Ty - EB) 4+ o(t) .

Fof
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Proof,

Var ((8) -y (8)) = Var ? (b, H(68; 3 A %))

- ?n Var(s, - H(t-8; ) A X)) =E ir(t-si_l) = EN(t) = M(t) .

Thus
M(t) = Var(N(t) - M,(6)) = Var N(t) + Var (M, (6)) - 2Cov(N(6),M; () ,

and therefore
Cov(N(t),M,(£)) = & [Vaw N(t)+Var My(s) -M(v)]

t (o o 2
-5[;54"?*1-%*1*0(1)]
2
Y% O o
-;(;g-f)‘f(ﬂ(t)- I
Yow
2 2
Z & - £
N P
A=gl . - ’
e g ¢ 20,
v




. ./;a.-“"ﬂ“f\'f;‘i

TR . DAY

A
. i
£ 2 '
| Pl
: K
g i,d J
‘f';‘ Note that the asymptotic relative savings in variance is 92 the

square of the correlation coefficient between X and H(x)."' Summarizing:
'meorem-z. The estimator

g LA AN R e

; %
4 | W'(6) = -Z2m(e) + E2 (k)
is an unbiased for M(t) with variance

2
By (1) + o(t)
)

¥ (0 4a the correlstion coefficient between X and H(X)). It follows
l

1

g that:

Var N(t) - Var M'(t) 2

...;i: ar V“- ar =p + O(l) . '
'.',: , 2 _x2 l
: Example: Let H(x) »x", F(x) = ¢ . Then, q
"E ‘ 0 2 - 00 2 - 4
.1! 0 =00 -/ﬂ 1§
‘. a

. - o 2 ‘
L Ex2 = 2 xe™* ax =1 ) :h
o 1

thus

| 2 |
' . 0’2=l-£-=&&§-;p= [faxhe.xdx-u]=%=%’E’E’-‘-,p2=m’:7y-.915.

Q-
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1
% ‘x}
Thus in this case (Weibull with shape parameter 2) the unbiased estimator .

'

M*(t) has an asymptotic relative reduction in risk over N(t) of i

; 91.5 percent. ||
Integration by parts shows that

R T W o A b R SR

}.ll 'x t
I 1 @ - ~\
r Pz H(x)F(x)ax ; .
B ' 0 I
P
= since H(x) = -log F(x) the integral can probably be given an enthropy !
:f"’ ~ ~ )
interpretation. Alac p = f;m(x) vhere H(x) = f: H(z)dz. This is .
. true since i
f % - L] bl X ~
! [ meFeen + [ e, e - 3 [T nG0T,, 00 - [ om0,
i ‘ Note that both p and ? are invariant under a change of time scale, 2
1 t »ct, ¢ >0, 2
. - 2 i
A [ L, 1In section 3 we estimated M(t) by a weighted aversge of N(t) = Foy
b : N(t)+1
ij and MF(t) = IJ: H((t'si-l) A x.t)' Now we apply the same 1dea but ':.
I stagewise. At stage 1, having observed X,,...,X, ., N(t) adds the .
! b,
; component &, = Ixi < t'siwl’ while L&.(t) adds H, = H((t-si_l) A xi).
‘ Each of &,, H, are conditionally (given 5, .) unbiased for F(t-§, ) | b
i and unconditionally unblased for F(i)(t ). The approach we now follow is {. t
'.- to use the weighted average of 51 and Hﬁ. which has smallest conditional g'
1
.T mimce given xl’ L ,xi -l. .~_
.5-_‘ :
¥ | 3
P 1
| g
1 s
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Define F, = F(t-8, ,), C, = H(t-8 Then:

g1
"“"("1"31-1) -7

Cov(ByHy I8y y) = Fy (7).
var (4, 18, ,) = B,+F, (7,-20,) .

The minimum conditional variance (given xl,... ,xi_l) untiased linu.r
combination is then:

¢,F, c.T
1 ¥y 1Ty
Iy = (1'_‘1‘1')51*1_1 H .

The corresponding estimator of M(t) dia:

N(t )+ H(t-8, ,)F(¢-8, ,)
M (6) = W) - —Fs D 2L o,eH,)

We do not know how M, (t)  compares with the other estimators we
have looked at. 'Me variance of an estimator of the form I K is
Z Var K, +2 iEJ Cov(l{i,xd); L, vas chosen from among & class of
estimators = K‘_ to minimize I Var K:L However we know very little
about Cov(Li,LJ). This latter quantity must be shown to be suitably
small in order to demonstrate that ML(t) has desirable variance
properties.
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; 5. We next consider an unbiased estimator with asymptotic variance :
O(1). Tus 1t asymptoticaliy enjoys & 100 percent reduction in »
l variance over N(t). ‘\‘
3
' As i3 well known N(t)+1 is a stopping time and thus by Wald's A
! 1dentd ty: | ' g |
! J
{
f N( )+
| SRR EERTTS R
|
‘Thus
'; 8
; ﬁ(‘b) - —!PI-J-'- -1
} ' ts wblied for M(t). Now VAr(Syiy).) = VAr(6+42(b)) = Var 2(t),

vhere Z(t) 4is the forward recurrence time at t. I u5 - !21‘3 < o

then Var Z(t) oconverges to

';l u% by -5u§
- -
KT RE T e
as t *o . Thus
2
- bup "-3“2
Yar M(t) + -
12u
and is thus 0)(1). !
! ; 100
4
; T - T “Qi‘i"‘- ﬁ;&mla I'U %0 .
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SMALL SAMPLE SIZE EFFECTS ON

TOLERANCE LIMITS, EXCEEDANCES

JAMES R. KNAUB, JR.
ARMY MATERIEL TEST AND EVALUATION DIRECTORATE
US ARMY WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NEW MEXICO
ABSTRACT - Tolerance Limits, exceedances and includances,
are useful indications of the adequacy of a sample size.
However, for very small sample sizes, such results become very
sensitive and may require a thorough analysis before con-
cluding whether sample sizes are édequate. Some measures of

sensitivity are investigated in this paper.

1. Introduction - When dealing with missile systems or any

other materiel which consists of a relétively small number
of very expensive items which will not survive a test, one
would not like to destroy any more materiel than necessary,
so sample sizes are made small. Time may also be a factor
in keeping sample sizes small. When testing to specified
test objectives, however, small sample sizes cause large un-
certainties in the results obtained. In hypothesis testing,

for example, a small sample size means that the power of the
test is low, and therefore one's ability tc discriminate be-

tween an untrue null hypothesis and a true alternative hypo-
thesis may be low even when the two hypotheses are very dif-

ferent. Although the power of a test is very important in

103



missile work, as it shows the sensitivity of rasults to small

sample sizes, it is often ignored. An example is the use of

e e S S

Wilcoxon's Rank Sum Test which is often used with no power

calculated, even though it is easily obtainable from a paper

E T R

e e ane e O I e Y TR TNy - Y

written by E., L, Lehmann in 1953 (Lehmann, "The Power of Rank

Pt

Tests," Annals of Mathematical Statistics, 24 (1953), 23-43),
Any measure of sansitivity which provides the likelihood

i of confusing one result for another would be analogous, to a

degree, to power. The central question is, "Is the sample

4 size sufficient to reduce to an acceptable level, the risk

B | of saying that more is known than actually is known?"

(se@ also Huel, Introduction to Mathematical Statistics, pages

g ; From Gumbel, Statistics of Extremes, pages 97 and 103-104 }

p s l-nyn'1 + (n=1)y"

k! | 274-277), the following equation is produced (due to 5.5. Wilks): Z“
] where P ¢ P[at least 100y% of the population is between the g

; smallest and largest observation of the sample of size n]. iﬂ
3

A first approximation (which appears to be low fur small sample ;

sizes) is given as

i 1 . V2R
4 it B T i

The previous equation can be solved iteratively from here

T

using small increments.
This is useful information. However, for very small _é

sample sizes, perhaps a measure of sensitivity as described

Lo b T
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| 3 earlier may be desired. To make one further analogy; when
| sample sizes are very large, point estimates may be suffi-

cient, however, when sample sizes are small, lower confidence

-
T SR T T SRy

! ; limits are needed in order to avoid misleading decision

makers. What iq.to follow is based upon the theor& of aexceed-

ances. (See Bradley, Distribution-Free Statistical Tests,

pagea 216-218.)
2, A Measure of Sensitivity - Consider an initial sample X,

‘. made up of n observations, ranked from r equal 1 to n, from

B R

which one wishes to make predictions about the next m obser~

= -

vaticns in a samle, Y. If b represents the number of observations in Y i
which have values lower then the rth lowest.value in X, then (from Bradley,

pages 216-218), -

. b P[axactly b of the Y's will be <X.] .

) r=1+b, ,n+m-r=b :
= r-1 Y ey ) ' 3
[ e . i
U“It: . b
! Latting P1™ lim —%—and P, "™ lim F?' where p<p,r,one can in-
mre mee

ﬁ vestigate the case of n, a finite sample size, but n+m, the ¥

SANE e -

; infinite population size. Now let g be used to represaent a A

gL At

measure of sensitivity for tolerance limits, in some waya A

analogous to, but not the same as, the probability of a type g

e ey

Il error. Here, ?
: 8 = (100p, % or more Y's < X.] ;
F : : P[lOOpot or fower Y's <xr].

'q ﬁ 8, here, is not a probability, but a ratio of probabilities.

IR AR SRR E T T




It shows the relative probability of having an unacceptable
(lOOplt) percent of the population values for a certain para-
meter (e.g., missile lethality), or more, fall below the rth

lowest value in the X sample, as compared to a hoped for 100pot

or fewer members of the population falling in that category.

Therefore, the smaller B, the more sensitive the results are

i : to implying more is known than can be known from a certain

sample size. (i.e., the smaller 8, the better.)

i i el D

The following briefly sketches the derivation of 8:

: m
! I (r-1+j’(n+g:§-j)

i B = lim dgmby' r-l
; mee by
, ‘r-1+i)(n+m-r-i) i
! Cr=1 n~-r 1

i jwmo

? m
i L [(r=1+9) (x=2+3) o oo (341) (n¥=r=3) (nt=r=3=1) . .. (M=3+1) ]
= lim J=bjy
me by
| 10
l

PP R SR ke

et

RIPa

\ For m large, blﬂplm and boipom, go sum in the numerxator from

~e,

]n—r

=S i

(q@)r'l[m(l-q) to m"Y(n-r)!, and in the denominator from

Py
S

(z-1) 'm""Fito (pom)r'l[m(l-pO)]n'z. Since there are an infin-

ite number of terms, these summations become integrals. For

s e T T T

. m ;
i r=l, n=5, the numerator becomes :.‘i:; ! d4me3) (34m=9) (24m=3) (14m=9)d3, \
m m
! which makes the integral approach m 1 4 For r=2, nw5, the A
S (m=3) "dj° Ly, i
m Pym m 3 !
{i integral is f (j+1) (3+m~3) (24m=3) (14m~-3)d3 + /3 (m=~3) "dj.
B P«Lm p;m
41 -
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¥
Il;
§

S

P




i In general then, the integrals will be of the form

E £35" Y (m=3) " Tay.
The only difference between numerator and denominator are the
limits of the integration.

For r=1l, n=5, one has

5

- 1o 2_ ” (Yo 3 4_..1.,.
] 3 _&4.1. 5
Po=2Py +2P, Py TP, .
As an example, letting 91-0.3 and po-o.z, g (rml, n=§, po-o.z,

s

A e T

pl-o.a)-o.Az. This means that the proﬁability that 30% or
more of the population will have values below the loweat in

. the sample of size 5 is 42% of the probability that 20% or

: . less of the population will be that low. If one does not wish

} ! to tolerate having more than 20% of the population that low,

then there is cause for a great deal of alarm, especlally if

fi ' 30% is an unreasonable alternative.

One can determine the axact proubabillity of having 100a%

TR

or more of the population fall below the rth value of the

i
ﬂ ' sample, and also the exact probability of having 100a% or

|
' less of the population fall theve. Call the first prob-
4 ' ability x and the second y. Then, one has
v x+y = 1, and

e(po=pIN100a%) - 3

Therefore, for such a 8, x and y,

' 8 1
X = 175 and Y'm




As an oxample, B (re=l, n=5, po-o.z, pl-O.Z) « 0.55,

s o oz o i

P[203 or mors of the Y's < x1] » 0.36, and P[20% or less of
the Y's « xll « 0,64.

For rm2, nw5, one has
3

gt e e S

g = %(l-p12).+ P - 1+%(l-pl4) + %(pls-l)

B N R R W S W ' ;
3 P P * 3Py " TP

wl As an example, for p°-0.4 tested against the alternative that

¥ p;=0.5, 8 * 0.28, :
As can be geen from the above, one may calculate, a priori,

an adequate degree of faith in the accuracy of results, A

[ what ranges of values of n and r may be used in order to have }f
major advantage in this approach is that one may use r>l. %

Often one can not obtain an adagquate sample size without a iﬁJ

large probability that at least one of the obsarvations will J;;
be lower than a value toward which one would like to taest.

3, A More Subjective Approach to Sensitivity. When planning

y : sample sizes for a test, thero is an additional approach which ‘&m
- : may be helpful. Consider Danzigar and Davis, "Tables of Dis-

i ' tribution-Free Tolerance Limita," Annals of Mathematical Sta=~

tistics, 35 (1964), 1361l-1365. From Danziger and Davis,

g vy w (NotnmryNlorrmly NIy

|
#
A
-
I
"The probability that N, ©f the Yi's lie above X, is given Ly: Sd
J
4 My j

N-No

;3 Here, i denotes a ranking of the Y sample, N is what hai been

labelled m, and Np is the nunber of Y, 's above X , where b iﬁ

f B
74 ; 108
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has been used earlier to represent the number of them below ‘
it. . ]

From the table by Danziger and Davis, with probability at -
least 0.75, at least 0.752 of a population will lie above tho g
second lowest value in a sample of ten. With probability at
least 0.75, however, the proportion of -the population above
the third lowest in a sample of ten is only at least 0.644.,
Therefore, if xz-x3 is very small, then a sample of size ten
is not adequate in that it can not distinguish very well be-
tween 0.752 and 0.644 as lower probakility bounds to the pro-
portion of the population values above such a point. Examin=-
ing the table by Danziger and Davis shows that, in the cases
shown, this form of mensitivity, as are most forms of sensi-
tivity, is extremely sample size dependent.

As a practical example of how this approach could be used,
consider the case of determining whether targets are detected
by a certain range. Imagine that the same number of targets
are detected before a critical range in each of two tests
using equal sample sizes. 1In one case, say all (or many) of
t;e detections bhefore the critical range werae just barely
before it, but in the other case, they were very early. Thus,
a slight change incritical range would cause a large change
in the proportion of the former population values believed to
ba above this point, but no change in the latter case. (This

situation is expected when dealing with rank procedures.)
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% 4. Conclusion - When analyzing data, one must be particularly E
‘@ careful in dealing with small sample sizes. It is highly ii
_E § desirakle to obtain every bit of information possible from ﬁ
f i such samples, but it is equally desirable to avoid claiming £9
'g | more knowledge of the population than the sample can actually iﬁ

provide. Balancing cost considerations against information

i |
fq ' obtainable can only be accomplished by careful consideration
Q# of all aspects. Tolerance limits and exceedances have a role :

in such considerations,
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THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo
US Army Flectronics Research and DNDevelopment Command
Night Vieion and Electro~Optics Laboratory
Infrared Technology Division
Fort Belvoir, Virginia 22060

ABSTRACT. There 1s a phencmenon that appears to exist in the portrayal
of measured data for nearly all types of experiments. It is observed that
when experimental data points are plotted as a function of a variable, the
data points are portraysd periodically rather than randomly about the theo-
retical curve. This is in contrast to an expected random distribution of
the measured data. Although riot always well defined, two distinct periodic
characteristics cun be pointed out: The firet is a sinusofdal characteristic
that appears to be cyclic in 10-12 measured events, and the second is the
"eusp" characteristic that appears to be cyclic in about every thrae to
four measurements. A method, which is bused on a heuristic equation that
relates a "periodic" probability of the arithmetic deviation with the associated
neasurement, generates data points whichare in agreement with some published
experimental values,

I. INTRODUCTION. There is & phenomenon that appears to exist in the
portrayel of measured data for nearly all types of.experiments. The phenomanon
is that when experimental data points are plotted as a function of a variable,
the pointsaremanifested in a periodic fashion about some smoothly drawn curve.
The periodic appearanceof the data points is in contrast to an expected random
distribution of the measured data. The periodicity, althoughnot always well
deﬂhed. can be seen upon examination of such plots in various technical
journals. Two distinct periodic characteristics canbe pointed out. The first
is a sinusoidal charactaristic that appears to be c¢yclic in 10-12 measured
events (1,2, 3, 4). The second is the "cusp' characteristic (5) that appeara
to be cyclic in about every three measurements, (6, 7, 8, 9) whercas other
curves appear to be a combination of both characteristics (10). 'The cited
references are specific examples selected from the literature that clearly
exhibit the periodicity. However, most other figures show data points,
that exhibit the periodic deviationsof the data points less clearly, but nearly
all of the experimental plotted data points show the phenomenon regardlass
of the physical parameters that were measured. This phenomemon is based on
observation devoid of 8 priori concepts of the randomness of events and asso-
clated measurements. It is thus concluded that there is a non-random re-
laticnehip between the experimentally measured data and the sequence of meas-
uring events. In order to develop a mathematical treatment for the periodio-
dicity of experimentally measured data, the following postulated is made:
1f for a well-ordered experiment, the experimentally messured data are taken in
an identical manner at equal increments of the independent parameter,
the data points will be periodic as a function of the (mecasuring) events about
the averape curve. Thus, the experimentally measured data can be determined
from the probability of the associated measuring event, in conjunction with

11
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the equation { 'r the experiment, it is, in principle, possible to predict
the experimental daeta points as & furction of measurements. ‘

The purpose of this paper is to present a heuristic method that generates
a periodic form for data points which are in general agreement with published
experimental values. Three examplee in which the "periodic" data points
exhibit close agreement with publinhed experimental data points will be
showm.

- T e
o7 Dot b i Rt £

Il. DEVELOPMENT. The deviation of a datum point from theoretical
curve (considered to be the mes-) is, by definition, the arithmetic deviation.
The arithmetic deviation of a measured value of a physical property of
an experiment is dependent upon the experimental procedures, and if enough
measurements are made, the distribution of the arithmetic Aeviations will
follow the Gavssian curve. From the Caussian distribution cﬁrye; it can
be readily seen that the arithmetic deviation is proportional tp_the standard
i deviation. This proportionality factor is the only variable in the Gaussian
: distribution equation and thus is a key parameter for the comprchension of
this paper. The proportionality fsctor, derived as a function of the
probebility of the Gaussian digtrib. ion equation, will alsoc be derived
from a heuristically developed periodic "pseudo-Gaussian' distribution for
the generation of periodic distribution of the data points.

{0 Tl T il s

e T

The Causgsian distribution equation is
Pm = 1/(ovVZn Jexpl=(x-M)2/202] (1)

where p, is the probability of the measured value, m is the measured value, -
M 18 the mean and ¢ 18 the standard deviation.

Let . o = Mik (2)

stherw ko is the arithmetic deviation and k, the multiplier ofoc, is defined
as the arithmetic deviation coefficient. By substitution,

1

Po = 1/(ovZn Yexp(-k2/2). (3)

Now p, 1s normalized so that the area under the curve is unity and thus
Py = 0.399/0 when m = M, the peak of the Caussian. However, by letting
P, = pm(GJZF), a comparative probability is obtained such that I, = 1 when
k-O, leee, m = M. . ‘

Now P, = exp(-k2/2) (4)
and k= + /w2 1n Po o (5)

Eq. (5) can be rewritten as

k = +/21 6)
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vhere I =~ -1n P, and is a form of the self~information equation (11) of the
, measurement which i associated with the arithmetic deviation coefficlent.
1 Thus, 1f the comparative probability associated with a measurement can

b be determined, the arithmetic deviation coefficient, k, of that measuremant
, can be calculated from Eq. (5). Sincec is a constant, k is proportional co
: the arithpetic deviation. ,

Since the portrayal of the experimentally measured data indicates that v
the measured values are a pariodic function of the measurement and since the
comparative equation developed from the Gaussian equation is not periodic, a

{ heuristic periodic expression which closely matches the Gaussian distribution
| (to about t 2.50) was developed for the probability of the measured value as
: a function of méasurement.

The empirical equation is
Py = cosey )

where Py i8 the probability associated with measurement N,
N = 1’2,3’ [N N ) .nd

vhere =-o< Ky<te and is dependent upon N. This dependence will be discussed

later. |

. Comparisons of the probability values of Eqna. (4) and (7) are shown in
Fige 1 for Ky and k in the range ~3.00 <k =Ky« +3,00, The comparison shows
Eqe. (7) ia an approximation to the Gaussian to “about + 1.750 and a reasonable
approximation from % 1.750 to about + 2.50. When Py = 0, Ky » % 2.5723...,
and for the comparable value of } 2.57230 nearly 99§ of the measure] data
points would ‘be included. An extension of Fig. 1 would show that P, would ,
asymptotically approach zero, whereas Py would oscillate in a coaine o
sjuared menner periodically in about every 5.2 Ky but the period would :
increase with increasing (and decreasing) Ky.

! ' .. The term Ky is selected such that Ky = a; + (N~1)(ap~a;) where o) is

heuristically se§ected for P, associated with N-l. the fi%%t measured event,
and ay is similarly selected for P, associated with N=2, the second measured o
event. Note that Ky is not necessarily an integer associated with the O
corresponding Nth measurement and thus (@,~a;), may nor mcy not be an integer. C

In the empirical expression for Py (Eq. 7) the standard deviation
coefficient per measurement does not appear. However, since P, and Py serve
comparable {unctions, and since k can be determined from P_, 1% 18 postulated
that the arithmetic deviation coefficient per measurement, kN' can bde
determined from Py by a similar expression as Eq. 5. The expression is

k.N - t'—z l.n PN » (9)

e s« i d =
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where ky is a function of Ky through Eqs. (9) and (8) in a transcendental
fashion.

The measured value, m, is now expressed as

for each meilurément N, whera o, is a constant and defined as the axperi-
mental standard deviation, Thus 1if M and °z are known, m can be determined
as a function of measuring events.

The polarity of k is nelectad as either + or - for the cusp
portraydl of the data points. vhereas the polarity is alternating in sign
(+ and =) corresponding to the alternating periods of Py for the sinusoidal
portrayals.

Eq. (10) is also a simplified form of an equation for a specitic
physical phenomenon when the experimentally medsured data are plotted as
a function of the independent parameter, Formally, each measured value
will be . '

Y = F(X) & kg (11)

‘where Y is the measured value, F(X) is the equation governing the physical

phenomenon and ko is the arithmetic deviation. Thus assuming for any
experiment the equation F(X) and the dependant constants gre kmown, the
evaluation of F(X) as a function of the independent variable would be the
mean and corresponds to the thaoretical curve. Tha arithmetic deviation,
hence Y, can be made as u function of measuring events if an a priori
determination of 0p can ba made,

_ IlI, EXAMPLFS. Eq. (11) shows that experimuentally measured data sre
periodic as a function of measurement events about some smooth curve
governed by .the physical equation. If F(X) is well-behaved and {f og
can be a priori determined (at least heuristically if not by other means)
the experimental date points should be, in principle, predictive. The

predictivaness of the method was not subjected to experimental vsriflcation.'

The reason is obvious since there can be no & priori determination of ¢

and ky for Eq. (11) for an experiment. Howuver, the published data points
of thrae experiments have heen closely duplicated bv the described method.
Three rxamples indicate a posteriori verification that experimentally
measured data are periodih as well as predictive. (The calculations were
accomplished with a pocket calculator, and thus the duplication of the data

points were not optimired.)

The firet example is a relative easy one: The sinusoidal data portrayal

of Raf. 1. The squation of the linea was determined to be

F(X) = 1(t) = 9.40 - 0.49¢t (12)
115
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4 where {(t) {s the relative transient current and t 1s in units of equal
incrementa of time corresponding to the time of 1.37 nsec (average) between

! ‘e: " measured datum point. The first point was at 2.74 nsec (or the 3rd
: I experimental point) which selected for the Nwl. Note that the logarithmie
‘ representation of the ordinate was portrayed in linear units. The terms
~ i i_. oo and oy for this example were heuristically chosen which generated

. the points that were in agreement with the experimental points, The terms
| and ganerated points are listed in Table I and the curve is uhown in Fig. 2.
f
|

The generated data pouints are nearly in exact agreement. .

i B

Teble I. Constants and '"periodic" data points keneuced as a function
of measurement for the cinusoidal example for Ref. 1. ,

F(X) - 1(:) m 9,40 « D, 49t
l - 0.00. “2 -lOOO’OE. - 0.05

3

o
Pt e

unite of equal increments of time of 200 seconds (average) between each
datum point. The first point was at 600 geconds (or the fourth axperimental

b !
{ 1 0 1,000 0.00 0,00  8.06 8.06
2 1 0.607 -0.98 -0.,05 7.39 7.34
3 3 2 0.103 =2.15 -0.11 6.71 6.60
g 4 3 0.057 =2,37 -0.12 6.04 5.82
i 5 4 04517 =1,15 =0.06 5.37 5.33
1 6 5 0.956  =0.30  =0.02  4.70 4.68
i 7 6 0.888 +0.49 +0.03 4,03 4,06
§ ; 8 7 0393 41,37  +0.07  3.36 3,43
I : 9 8 0,016  +2.87  +0.14  2.69 2.83
. i 10 9 0.165 +1.90 +0.10 2402 2.12
l The second example 1is to duplicate Raf. 6 for the cusp periodicity. The
i equation of the line is F(X) = R(t)=98,0where R(t) 1y the counting rate and
[ is & constant value as a function of tine. The measurements were made. in
|

! ; point) which was selected for Nj. Again a;, o, and 0p were heuristically
‘1 - chosen. The constants and the calculated values are listed in Table II

) and the "predictive" points are shown in Fig. 3(a) by the solid dots.
The open cirecles are the relative poeitions of the experimental data
points as estimated from Ref. 6 with which the predictive points are
-ﬂﬂ not in agreement. The first twelve predictive points are nearly in exact

if agreement with the experimental points numbers 4 through 15. However,

! the 13th predictive point must be moved to the 18th experimental point

) for the cusp periodicity to agree with increasing measurements. With
the exceptions of experimental points 16, 17 and 30, the other points
i are either in nearly exact or close agrecement.
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Fig. 2. Duplication of the sinusoidal portrayal of experimental pointa.
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Table II. Consatants and "periodic" data points generated as a
d. . function of measurement for the cusp example for Ref. 6.
. 3 EY

P(X) = R(t) = 98.0

61 = 1000’ “2 - 3.00’0E - 0,8

N KN PN kN kNaE V,R(t.)+kﬁ':g.'

1 0.607 =0.98  ~0.78  97.22
3 0.067 =2.39  ~1.91  96.09
5
7

s ns e

0.956 -0.30 «0.24 97.76
0393 -1.37 -1.10 96.90

el T

fars
OCWVWOBNONWUVSBUWLNM
[
[

9 0-165 "'1.90 "1052 * 96.‘8

- 0.996 ~0.09 -0,07 97.93

) : 13 0.268 -1.62 -1,30 '96. 70
v i 15 04265 ~1.63 -1,30 96.70
§ b 17 0,997 -0.07 ~0,05 97.9%
{ . 19 00180 "1085 "1.48 96052

' { 12 23 0.979 -0.21 =-0.17 97.83
¥ ; 13 25 0.117 -2.07 -1,66 96,34
T ! 14 27 0,440 -1.28 -1.02 96.98
! t 15 29 0,949  -0132  -0.26  97.74
‘ | 16 31 0,071  -2.30 -1.84 96.16
5 17 a3 0.517 -1.15 -0s92 97.08
18 35 00911 "0043 '0.34 97-66

: 19 37 0.039 -2,5% «2,04 95,96
o 20 39 0,586 -1.03 ~0.82 97.18
irt"i:". -21 41 00869 "00 53 "0042 97. 58
a 22 43 0.017 -2.85 -2.28 98,72
23 45 0. 640 -0.93 -0.74 97.46

24 47 0.824 -0.62 -0.50 97.50

i 4 25 49 0.005 -3.26 =2.61 95.39
3 - 26 51 0,706 -0.84 -0.67 97.33
27 53 0.776 =0.71 -0, 57 97,43

! 28 5% 0.001 =422 -3.,38 94462
29 57 0,756 -0.75 ~0.60 97.40
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The third example is to duplicate Ref. 10 for a curve of experimental

) points that are less regular than Refs. 1-4 in the periodic portrayal.

% The smooth curve of Raf. 10 could not be fitted to an exponential or power
equation. However, for F(X) the point by point estimated values for sach equal
increment of t = 200 sec are listed in Table III. The fivst point was
at 200 seconds (the second experimental point) which was selected for
Ny« The parameters aj;,up and op were heuristically selected. The
constants and calculated values are listed in Table III, and the points
are shown in Fig. 3(b) hy the solid dots. The polarity of the 17th

1 through 29th data points wure roversed from the expecte: polarity to

! exhibit agreement with the recouustructed experimental valuss. The open

' circles are the experimental values as estimated from Ref. 10 with which the
predictive points are rn~: in agresement. The positions of the pariodicitiua
of the two setsof data are in close agreement with the exceptions at the 8th,

. . 20thand 25th points. The values of most of the data points, 21 of the 29,

# are nearly identical, and with the exception of predictive point No. 8,

the other seven are in reasonably close agreement.

ek Ol .l -
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g IVe DISCUSSION. The subject of this paper encounters a paradox in the
' distribution of themeasured values of a physical parameter of an experiment. The
binomial distribution 1s a mathematical treatment of random events whose

3 measured values are discrete, whereas the GCaussian distribution is a mathe-

‘ matical treatment of random evente whose measured values are not discrete

o and cannot be exactly duplicated. The measured values of a measurement

1 are considered to be independent of the sequence of the measurements and the
B values randomly distributed about aome mean. The independence and randomness
i of the measured values from event to event '"vary in an irregular manner that
defics all attempts at prediction" (12)., However, since it was pointed

out in this paper that most plots of data points are portrayed in some

¥ periodic manner, the data points, in principle, should be predictive.

g The predictiveness was demonstrated in this paper, albeit ex post facto.

The data points for three experiments were closely duplicated after !
heuristically determining three constants. It must be stated that the ¥
mean (tbe equation of the experiment) was known. Thus, in thie context, ‘ )
the measured data points are predictive, hence the paradox. ;

WA

~$ The Caussian distribution is one (of two primary concepts) equation used
& in this paper. The treatment of the equation to obtain the comparative

i probability eliminated the dependence of the probability from all parameters
excoept one: The arithmetic deviation coefficient. Solving for the co=
efficient, it was found that the coefficient was a function of the probability
which was identified as a form of the self-information equation. The signi-

) ficance of the relationship between the coefticient and the information

i equation cannot be developed at this time, but that the Gaussian distribution
.fl equation is a form of the information equation can be recognized.

The second concept is the heuristic equation relating the probability of
8 a meapured value as u function of sequential measurement. If a well ordered
i experiment is performed such that upon equal increments of an independent
paramater, the measured value is recorded in the identical manner, including

e o~
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Dupligations of (a) the cusp portrayal and (b) the cusp-sinusoidal

portrayal of experimental data points.
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.j ? Table I1I. Constants and "periodic” data points generated as a
N, {- - function of measurement for the cusp—~sinusoidal example for Ref. 9.
] v
¥ F(X) = R(t)
: ay= 0.00, a; = 2,00,0p = 0.3
b :
4 ,.
il
E | N Ky Py ky KPR R(t)  R(t)+kppg
R §
5 ' 1 0  .1.000 0,000  0.00 66,2 6642
‘ : 2 2 0.103 +2,13 +0.64 59.0 59.6
| : 3 4 0,517 ©  +1.15 4035 53.7 54,1
! ' 4 6 0.888 ~0,49 -0,15 49.3 49,1
b 5 8. 0,016  ~-2.87  =0.86 4646 45,7
e 6 10 0.676 -0.89 -0.27 44,2 43.9
5 7 12 0.783 +0.70 +0.21 42,0 42.2
9 B 14 0.000001 +5.20 +1.56 40,3 41.9
f' 9 16 0.655 +0.92 +0.28 38.7 39.0
’ 0 18 0.688 «(.86 -0426 37.4 37.1
! 11 20 00010 "3.03 "‘0-91 3602 3503
1 ‘ 12 22 0.854 ~0.56 ~0.17 as.l 34.9
X 13 24 0.601 +1.01 +0.30, 3442 3445
- 3 14 26 0.035 +2.59 +0.78 33.4 3442
f \ 15 28 0.908 +He b4 +0413 32.6 32,7
i 16 30 0.521 ~1.14 ~0.34 31,9 31.6
4 17 32 0.069 +2.31 +0,69 31.3 '+ 32.0
il 18 34 0.947 +0.33 +0.10 30.7 30.8
: ‘ 19 36 0.448 =-1.27 =0+ 50 30.2 29.7
| { 20 38 0,109  -2.10  =0.63 29,9 29.3
f 21 ‘00 ' 0o973 “'0-23 "‘0.07 29-‘0 29-3
22 , 42 0.382 +1.39 +0442 29.0 29.4
‘N f 2] 44 0.153 +1.94 +0.58 28.7 29,3
. ! 25 48 0.322 ~1.51 -0.45 28.2 27.7
! 26 50 0.200 -1.79 =0454 28.0 27.5 :
i 27 52 C.998 +0.06 +0,02 27.8 27.8 !
-E 28 54 0.269 +1.62 40449 27.6 28.1 o
p! 29 56 04248 +1.67 +0. 50 27.4 27.9 §
. 3
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time lapses, the data points appear to be portrayed in a periodic fashion in
about either every 3-4 or every 10-12 measurcments. The probability of the
measured value is a function of the measurements for -3.00 g k=Ky 2 +3.00
and follows a cosine-squared law that nearly duplicates the Gaussian distri-
bution probability. The probability dependence on measurements caunnot be
derived from first principles but is heuristically justified by the fact it
enables the "predictive" values to agree with the experimental data.

The duplication of the experimental data points that are portrayed in a,
sinusoidal fashion is in itself not too profound. In fact, for Refa. 1-4,
the points can be readily duplicated by nearly eny periodic mathematical
treatment. However, the heurietic method, whan applied to the duplication
of the pointe that are portrayed in cusps (as in Refs. 6~9) and combination
of cusps and sinhusoide). periodicities (as in Ref. 10), the method must be
considered as being significant. The significance is emphasired when form a
cutsory examinatlion sone of the data points appear to be random but are
duplicated by the method. Obviously, all of the published data points
cannot be duplicated by the limited treatment of the heuristic method

described in this paper.

It is poutulated that the sinusoidal portrayal of data points in
which the measured parameter does not have s fixed bound or physical
barrier. Examples of the sinusoidal characteristic would be the measure
of electron trapping as a function of time (Ref. 1), and the determination
of the beam displacement of a reflected electromagnetic wave as a function

of distance (Rsf. 3).

It is postulated that thecusp-type portrayal of data points is charac-
teristic of an experiment iIn which the measured parameter (the dependent
variable) has & fixed bound or physical barrier. Examples of the cusp
characteristic would be the '"no influence" effect of source strength as a
function of time (Ref. 6), and the measurement of the length of a meter stick
by the eclipsing of the position of a light source by the end of the atick.

There are two baffling consideratione that were required for obtaining
agreement of the poinfts in two of the exanples. The £irst is that two
experimental points had to be by=-passed iIn Raf 7, and the second is that a
change of polarity for the arithmatic deviation coefficient for Ref. 10,

These considerationsmaybte resolved 1f the constants of the hauristic equation
were evaluated simultaneously with the experimental data pointe of an
experiment performed in a human factors evaluation laboratory. In such &
laboratory, the constants may be determined from the nature of the experiment
and the experimental procedures, and thus in conjunction with the equation
governing the experiment, the measured data points may be indeed predictive.

Ve ACKNOWLEDGEMENT. The author wishes to acknowledge Mr. Raymond J.
Stefanik for valuable discussions and comments.
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VARIABLE TRANSFORMATION IN NONLINEAR LEAST SQUARES
MODEL FITTING

Alvars Celmini
Interior Ballistics Division
U.8. Army Ballistic Research Laboratory
Absrdeen Proving Ground, Maryland

ABSTRACT. The numerical treatment of nonlinear model fitting
problems often can be simplified by manipulating the model equations,
Algebraic manipulations, including nonlinear transformations of mode)
parameters, do not change the numerical result ¢f the adjustment.
Tharefore, such manipulations can ba a powerful method to improve
the parformance of solution algorithms., Nonlinear transformations of
the obsexrvations, on the other hand, do change the numerical resgults
unless the normal equations are transformed accordingly. The latter
transformation has been neglected by previous authors and this article
provides a complete set of formulas that are nasded to implement
transformations of obssrvations. The tranaformations are, however,
in general less useful than parameter transformations but may have
applications in particular situations,

l. TINTRODUCTION. A mathematical model fitting problem arises
when one cvompares real observations with theoreical predictions. The
observations always contain observational inaccuracies and, likewise,
the theory of the prediction can ha inadequate., If discrepancies
between obsarvations and predictions are unacceptably large for a
particular situation then one is faced with the task to adjust in a
rational manner either thea observations, or the theory, or both so
that an acceptable mathematical description of the event can be
established. The problem can be subdivided conveniently into threse
subtacks, each of which requires a different approach and hackground
information.

First, one has to chose a model. Normally, this requires
supperting information from engineerinyg, physics, geometry, etc.,
which may suggest or postulate a reasonable mathematical description
of the observable event. We shall assume in this article that the
model is formulated as a system of equations containing observations
and, posaibly, also some undetermined model parametevrs.

Once the model is salected, one can compare predicted values .
of obmervable gquantities with corresponding observations. The
comparison provides the basis for a rational adjustment of the
observations and/or of the model., This subtask of the problem is a
purely matharatical part of model fitting and it belongs to the
oategory of ill-posed problems. 1ts mathematical/numerical treatment
is independent of the other two subtasks, i.e., of applications. Ve
ghall be concarned with this part of the problem in the presant article.
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After the adjustments have been carried out, one has to validate
the mathematical model, unless it has been prescribed, e.g., by the
gaometry of the event. The validation involves typically, but not
necessarily, a statistical analysis of the discorapancies between ob-
servations and predictions., The result of the validation process may
bo a new formulaticn of model squations and submaguent fitting, i.s., ]
a repetition of the whole task until some validation criterion is 1
satisified. We shall not discuss this part of the problem, noticing ‘
only that the results of the second aubtask provide tha data basis
nacessary for a validation.

If the modal equations are not linear then the modal fitting
problem generally leads to systems of complicated simultaneous equations
and corresponding numerical difficulties may arise. Often the numerical '
treatment can be simplified by a reformulation of the model equations,
particularly by introduction of new variables through variable trans-
formations. Such manipulations have been suggested in textbooksl-7 and
are routinely used in applications. Examples of recently published
applications where variable transformations have been used are refer-
ences 8, 9, and 10,

A closer investigation of variable transformaticns in model fitting
problems suggests that the formulations should be used more cautiously
than some of the texts suggest. Therefore, we shall present in this ,
article an investigation of some consequences of the transformations
and draw conclusions about their usefulness for the simplification of
the numerical treatment of model fitting problems,

problem in general terms and discuss the effects that can bes anticipated
from manipulations of model equations. In Section 3 we shall speclalize
the considerations to nonlinear least squares problems and produce 3
explicit formulas that are needed in such problems. Some examples will
be presented in Section 4, and Section 5 will summarize tha conclusions
that can be drawn from the theoretical discussions and from examples.

In Section 2 we shall formulate the mathematical model fitting ﬁ
y

2. GENERAL ASPECTS OF MATHEMATICAL MODEL FITTING. Let the model
aequations be

A(X)0 = 0, (2.1) ,

whare XERn ig the vector of all observations, BERP iz a model parameter 1
vector, and A(X) is an operator that operates on 6 and has a range
R'. We agsume that the following relations hold batween the dimensions

n, r, and P

n>r>p>0. : (2.2) '}
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‘-ﬁ P By permitting the dimension p to be zexo, we include in our ccnsider-
=.f : ations also cases in which the modcl equations do not contain free
parameters. Then equation (2.]) reduces to A(X)=0.

. Typical for applications are cases in which the r equation (2.1)
i for 6 are independent and, because of (2.2), 4o not have a solution.
L Then one replaces the model equations by another system %

i . A(x)o = 0, (2.3) 5
chosing the operator A(X) such that it approximates A(X) and has a

solution. The determinziion of A(X) can be considered as the central
part of the model fitting prohlem,

gl it
.

In order to have a measure for the approximation we introduce
a metric for the oyerators. Let pl[A(X), A(X)] be a watric. Then one
can turmulate the mathematical model fitting as the following con-
s4rained minimization problem:

e
Vel Sl T N

o

A(X)6 = 0, W{p[A(X), A(X)] = mir., (2.4)

| where W{p} is generally a convex object function. The choice of the
metric p and of the ohject function Wi{p} detormines the type of the
model fitting, e.q., least squares, maximum norm, etc.,

' '; . We £hall now diacuss the zselection of an approximate operator
-y A(X). First, we notice that the model operstors h(X) and A(X) are
ST : generally neesded and defined oily within a finite naighborhood of the {
observations X, Therefcra, assumptions about properties of the operators

%~WT' } need to be made for that nsiyhborhood unly. Let the neighborhood
< ; consist of all points Z = X+C, whereby C is rastricted component-wise !
-n.'é ' by i

et

=
oSt

Yy £8 AT, =12, ouuy (2.5)

L

3 The intervals (v, , ) normally contain zero, but exceptions are
. possible and do &ccu§ in applications. Second, we assume that within

' the neighborhood (2.5) A(Z) is a continuous function of 2. Then a
i reasonable choice of A(X) i3

| A(X) = A(X+D). (2.6)

The choice achieves a natural parametrization of the approximction.

|
J The approx.mation parameter is the vector Ce¢R and the operator A(X)
{; depends continuously on the parameter within the restrictions (2.5).

The parametiized model fititing problem can be formulated as X
follows:
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A(X+C)6 = O,

W{p (A(X+C), A(X))} = min, (2.7)

The quantities to be determined by equation (2,7) are the approximation
parameter C and the model parameter 6. We assume that the solution
vector C is within the limits specified “wy equation (2.5).

We will need in the sequel some diffeurentiability propertiecs for
the model operator. As far as X is concerned, we assume the propertias
to hold within the neighborheood (2.5). With respect to 6 ws assume
that a similar neighborhood e.:ists in the vicinity of the anlution of
equation (2.7} in which A(X)0 is a continuous function of 6. The
differentiablility assumptions sxa that A(X+C)8 is twica differentiable
with respect to all its n+p arquments within che cartesian product
rpace of the neighborhoods of ¥ and 6. We also assume that within
that apace

rank 'g":-- r, (2-8>
and define

pIA(2), A(X)) = ||z - %|]. (2,9)
p is a metric within the neighborhood in which (2.8) holds. We also

assume that the model equations do not contain redundant parameters.
The assumption may be expressed ag the reguirsment

rank Bﬂégli = p. . (2.10)

With the specialization (2.9), the model fitting problem becomes

A(X+C)0 = 0,

wip{a(x+c), AX)1} = wl||c||} = min. (2.11)

Equation (2.1l) is an abstract fourmulation of common model fitting
problems. The difference C betwsen the observations X and the
Ycorrected observationa" X+C is called the residual vector, In the
formulation (2.11) we requira that a norm of the residual vector be
ininimized, subject to model equations which have to be satisfled at

X+C. The model parameter vector O is not essential in this formulation.
The number of model parameters may be zero and it is normally ordsrs

of magnitudes smaller than the numver of approximation paramneters, i.s.,
residuals. The ceterminatlion of 8 can pe, of course, in some applica-
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tions more important than the determination of C, but thise is not
always the case.

i iSRS

,_5 f A loast aquares model fitting problem is a special case of (2.11),
| characterized by a particular choice of the norm in the dafinition
b (2.5), and of the object function W{p}. The laast squares metric is

o oTER-

o[A(Z), A(X)) ~ ||Z=x|| = [(z-m“’n""tz-x)l* ] (2.12)

where R is an estimate of the variance~covariance matrix of the
observations. Tha least squares objsct function is ?

ﬂ t
‘}3‘ ' wip} = p2 . (2.12)

R Therefore, the least squares model fitting problem is defined by f

h(x+0)t L] 0;

4 ' we [lcf|? = ¢"r"te = min, (2.14) '%

. x In equation (i.14) we hava used ¢ and ¢t instead of C and 6, respectively,
| thus indicating the least sguares values of both parameter vectors,

9 The use of R-> as a norm matrix in the definition (2.11) makam
- the norm ||c|| and W dimensionless, which is very vonvanient when
fitting results are compared. If the variance-covariance matrix R
L ; is known exactly, then the rolution of equation (2.14) is w maximum
i i iikelihood solution of the approximation problemll, The same

X, | maximum likelihood solution is obtained if R approximates the variance-

.. covarianse matrix up to an unknown factor. In applications one has
to be content with an estimate of R. Then often the off-diagonal
elements are assumed tu be zero as a matter-of=-course. Becauss the
) results of the model fitting depend on K, such assumptions should

not be made without having reasons that zero is & better approximation
5 : than a non-zero value. The theoretical treatment is not complicated
?1 : by the assumptior. that R is not diagonal, nor are the numerical
complications uasurmountable. Realistic estimates of R are, however,

imporiant for the interpretation of the results, and for the validation

'i of the fitting.
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_ We solve the optimization problem (2.11) or (2.14) uwing Lagrange (I
: | multiplier teshniqgue, and call the multipliers correlates, as uesual P
k. in adjustment problems. Let KeR bes a correlate vector and let the

4 modified objact function be

d W %w{l lel |} - Ka(xsc)e . (2.15) 3

“
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Neacessary conditions for the solution of the optimigation problem

are obtained by setting zero the partial derivatives of W with respect
to the unknown C, 6, and K. Thie yields the following set of normal
equations.

13 d T _
598 willell} - 35 (K'AGKCI0] = 0 , (2.16a)
%e' (KTA (%+C) 8] = O, (2.16b)
A(X+C) 8 = 0, (2.160)

The solution of the model fitting problem (2.11) is among the solutions
of equations (2.16). On the other hand, one cannot guarantee that &
particular solution of the normal squations corrasponds to the
absolute minimum solution of squation (2.11), nor is the uniqueness

of the molution given. An investigation of these complications is not
the aubject of this paper. Mostly. such problems can he, and are
taken care of by ad hoc maasures based on background information from
the application. Therefore, we simplify our present thaoretical Adis~
cussion by assuming in thisx rection that a numerical solution of
equations (2.16) can be obtained, and that it has been verifled as the
absolute minimum solution of equation (2.11). :

In least squares problems, the first term 3W/3C in equation (2.l6a)
is linear with respect to C. Nonlinear esxpressions which could be
possibly simplified by algebraic manipulations may ocour in the msecond
term in aguation (2.16a), and in equations (2.16b) and (2.16¢c). The
structure of thesa terms strongly dopend on the form in which the model
equations (2.16c) are cast, and it is obvious that simplifications can
be achieved by prcper formulations. Particularly, one does not have
to insist that each model equation be solved for a "dependent" observa-
tion, Such a form is assumed in most textlooks on data reduction and
posiulated in computer programs for data reduction problems. Quite
often an impiicit formulation of the aquutions (2.16¢) can be simpler,
producing also simpler expressions for the derivatives in equationm
(2.162) and (2.16b). The sclution of the problem (2.11) is, of course,
independent of the particular forin in which the model equations are
cast. This remark is trivial in the present context, and it is a
consequence of the formulation of the model fitting problem by aguation
(2.11). Reference 12 reports about numerous unsucceasful attempts to
achieve a similar invariance statement when the problem was formulated
differently.

The aforementioned manipulations of the modal operator RA(X)0 can
algo include nonlinear transformations of the parumeter 6. Such
transformations do not affect the definition of the metric p, bacause
the retric of the operator is indjpenden® of the operand. Therefore,

L k]




TR

: t the transformations do not affect the first term in eguation (2.16a) k.

! I sither and are a powerful tool for the simplification of the rest of

y . the equations. An example in which nonlinear paramster transformations
{ are used to linearize the model equations is reported in reference 9.

In Section 4 we shall give other examplas.

= T

é The formal procedure of replacing parameters is as follows:
X , Suppose that one wants to replace the parameter 6 by ¢ whareby both

" : parameters are related by a nonsingular furction g
7 ; J

(R;qu;arity of the transformation need to be assumed only within a’
neighborhood of the solution.) Let the model equations ba in terms
of o

R Ty v

Al{X)o = 0. | (2.18)

The operator A can be obtained from A always by the definition

e e o T S B e R PO T T T e D g Bt TR TR e o g

ey

AlX)o = A(X)w(a), (2,19)

el dae 57 o e A

however, often one can find other equivalent formulations that are
: simpler. The metric p associated with A is defined as in equation
L (2.9)

p [A(z), A (2.20)

wWith this definition and the same object function W{p} as before one
obtains the normal equations

- e —gram— o eme = o

L2 w (|31} - & R+l = o, (2.21a)
Lk 3c 3C

v § .
¥ .
i f -:-5- [K'A(x+5) 0] = 0, (2.21b)

flf 4@3‘
' " ; Ax+C)o = 0, (2.21a)

The anlution vectors ¢of equations (2.16) and squations (2,21) are
related by

ce=C, 8= wo (2.22) Jt

N
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The vectors K and X can be computed from thess values using formulas
given in the next section.

The relation (2.22) is again a simple consequence of the formula-
tion (2.11) of the model fitting problem. Bender? proves the
correspondence (2.22) for a particular transformation and application,
and indicates that previous developers of software for such prohlcm:
were not aware of the relation.

If the solution of the model fitting task has bean found from
squation (2.21) in terms of ¢, but the parameter vector 8 is of
interest, then one needs in addition to equation (2.22) another formula
for the accuracy of 6. Lot us assume that the solution algorithm for
equation (2.,21) has alsc provided information about the acouracy of
¢ in form of an estimate Vg of the variance-covariance matrix of the
components of 0. (In Section 3 we shall give formulas for Vg in least
squares problems.) Then an estimate of the variance-covariance matrix
Vg of the components of 6 can be obtained by applying the linearized
law of variance propagation to the relation (2,22)., The result ie

ow ow, T
ve - EE'Vu (ac) . (2.23)

‘

More complicated are consagquences of such manipulations of the
model equations that involve transformations of the observations. This
is mo because the transformations now affect the definition of the
norm p. Next, we shall consider such transformations,

Let a transformation of nbssrvations be

Y w v(X) (2,24)
with the inverse

X = u(y) .
We assume that the transformation is regular within the neighborhood
(2.5), including the solution X+C, and that the function u(Y) is

there twice differentiable. The model equations (2.1) are replaced
by equivalent (usually simpler) equations

A(Y)0 = 0. (2.25)

The operator A(Y)8 can be obtained, e.g., by the definition

i s A
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~A(v)e m Alu(y))e, : . ' (2,268) + .

but, as in the case of parameter transformations, usualiy other
equivalent formulations can be found that are simpler.
! Oy o ,
When we formulate the model fitting problem in terms of Y, we 18
have to keep in mind that the goal ia to minimise the distance C B,
between the actual observations X and their corrected values X4C. . i
In least squares problems, only such a minimimation yields under M

conditions a maximum likelilhood solution. Then the minimization _'ﬁt
problem (2.11) is - N

Y= V(X).

e e et e -‘:-—w.v'q_,,_.,._e-—_ﬂ-"m BTN gt e

P -

S e

e

A(y+B)o = 0, oo (2.27)

w|uty+m) = x||} = min.

i
;

The normal equations for the problem (2.27) are

: 19 L8 T ' N 3

4 : 5 55 Wl |ucrem) x|} - 55 (KA(r+B)0) = O, (2.28a) b
! | .
. - ("R (r+3)0) = 0, (2.28b) ¥
i A(Y+B)8 = 0, (2.280) E:

‘ The first term in equation (2,28a) is not linear with respect to the g
: unknown B unless the transformation (2.24) is lineay. Therefore, a N
nonlinear transformation that produces an operator A(Y)6 which is it
simpler than the original operator A(X)6, introduces nonlinear terms i
I . in equation (2.28a). The new nonlinearities may offset the advantages by
; ' gained by a simplification ¢f the other terms in the equations. g

L i We shall pursue this point further in the next section and show 3
§ ' in detail how the normal equations and algorithms are affected by ;
by { trangformationa of obmervations specifically in least squares problems.

j 3. LEAST SQUARES MODEL FITTING. We consider in this sectiun
\ the effects of variable transformations on least squares model fitting .
' problems. We shall first derive the basic equations for nonlinear D
g 3 least squares problems in terms of the original observations, and then
3 : show how the squations are affected by a transformation of the
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observations. We simplify our notation by defining a vector function
r({x,6) by

P(X,0) m A(KIO, B | (3.1
Then the mod‘l oqnatibp (a.1) is

P(%.8) =0, o T @
and the least squares mo§01 fitting problem (2.14) is

F({X+c,t) = 0,

Ile||? = ¢’ Yo « min. (3.3)

In the sequel we will use subsoripts to denote derivatives,
Also, because derivatives of F(X+o,t) with respect to ¢ are identical
to derivatives with respect to X we shall use the subscript X for both,
'm\tll, .-qn' '

Py (Ré0,8) = 3= Plkve,t) m &= Blxoo, )

and
(KTF (Rec,8) . = 22 (KTF (Xe, £) ] 22 [KTF (X+o, t) ]
(Xt 8y = 3x5e AR YT '

are matrices with the dimensions rxn and nxp, respectively.

Using this notation, the normal aquations corresponding to the
problem (3.3) axe

R - lex(x+c,t) -0, (3.48)
kTFt<x+c,t) -0, (3.4b)
F(X+e,t) = 0, (3.4¢)
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. The normal equations are in general nonlinear with respegt.to ¢
{ and t. Therefore, their numerical solution will require some kind of

} iteration. We obtain second oxder iteration equations for .equations
i (3.4) by expanding the normal equations at an approximation to the
1 golution and keepinig the linear terms of the expansion.  .Lat the

: approximation to the solution be C, K, and T, and that the co:ronpbhdinq

}- corrections bae ¢, k, and T. Then the expansion yields the !ollcwing
Newton equations for the corrections:

i

R AL

[ [1-R(K"P) 4 )€ - REy (K46) = R(K'P) 1= - C, (3.5a)
iy Z ‘ . _' L
; : T T, ™ . : DL
“ ,‘ (K°F) &+ Fo (Kék) + (K°F) .7 = O, (3.8b)
{37 E rxc +F.Tw==F. (3.50)

-—

The arguments of ' and its derivatives in equations (3.5) are X+C and T,

1 - Newton-Raphson iteration cqultionn cun be established by ouitublo

1 manipulations of equakions (3.5)8/13,14,15, » uet of such iteration =
equations are given in the Appendix, Most authors simplify equations

. (3.5) by naglecting ull terms that contain second order derivativesl,11,16,17,
e This ylelds so=-called Gauds=Newton proao&urcl that have thnorntioully

‘ only linear convergence and that also may have other poauliaxitieul

\ The final step in a model fitting problem is to obtain variance
N ) estimates of the solution in terms of thu estimated variances of the
T ! observations. We shall restriot ourselves in this article to the
AR CE astimation of the accuracies of the lecast squares value t of the
; parametar vector, and ehow how the estimation formulas change dua to
: i transformat ions of observabiss. We shall use the linearized variance
v . propugation formula for the estimates, Estimates of the accuracies
, of the corracted observations x=X+c can be obtained by analogoum
o [ processes.

' The formulas can be derived from the linear terms of an expanuion
A , of the normal equations (3.5) at the solutionld., Let dx, dk, and dt
1 ; be the differentials of the solution vectors xw=X{c, k and ¢,

:1 i respectively. Then the expansion yields
i (I-R(TF), Jdx = RF,Tdk = R(k'P)_ dt = dX, (3.6a)
‘ , . XX X Xt
(kTF) Ak + Epdk + (KTF) At = O, (3.6b)
T; ,é F dx + P dt = 0, (3.6c)
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The arguments of F and its derivatives in equations (3.6) are x and ¢.

By manipulations of equations (3.6) that can be done in various
waysl3/18 one obtaine linear relations betwsen 4t and dx, and
between dx and 4AxX, respectively. Let the former relation be

N at = § 4aX. (3.7)

(Explicit formulas for N and S arxe given in the Appendix.) Then the
estimated variance-covariance matrix vt of the parameter vesntor t is

1 T

v. st R YT. (3.8)

t

1 ; It is obvious from the derivation of equation (3.8) that V¢ which

i | itself is only a linearized approximation depends on sacond order

: derivatives of F. (The formulas in the Appsndix show explicitly this

' dependency.) Neglect of the second order derivative terme renders a
formuls that is theoretically less than first order accurate. Thersfore,
such a neglect has to be justified in each application by providing
egtinates of the nagnitudes of the neglected terms. Of the cited

‘ references, only in references 13, 14, 13, and 18 complete first order

| formulas are used. ol

Next, we introduce variable transformations into the least scquares
model fitting problem. We can restrict oursslves to transformations
of observations because, as shewn in Section 2, transformations of ;
aodel parameters have the same effects as simple ‘algebraic manipulations i
of the model equations,

let, as in Section 2, the transformation be given by

{ : Y = v(X) (3.9)

with the .nverse

K | X = uly).

Ir terms of ¥, the least squaras nodel fitting problem is defined by

[
X | Y = v(x), (3.10a) i

H{Y+b,t) = O, (3.10b)
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. b
§ ¥ !
| !

o ;
: | lutren)=x||? = fu(ren)-x1TR™ [u(v+b)-X]) = min. (3.10e)
; Equation (3.10b) is a model equation, equivalent to equation (3.2) 3
and expressed in terms of Y. . ¢

' The normal equations for the problem (3,10) are
: T -1 ) _
b (0 (¥4B)]7R © [u(¥4b)-X] = X'H (¥4b,t) = 0 (3.11a) i
" “Tgt (Y4b,t) = 0, (3.11b) B
4
¥ i
i : H(Y+b,t) = 0. (3.11e) g
| ;
‘; ' Corresponding Newton equations for corrections B, k, and Tt of approxi- G
- i mate solutions B, X, and T, respectively, are
3 T T
[I-QE]B-Qnyo (XK+¢) = Q(K H)Ytt ==}, (3.12a) §

. T T, T :
. (x H)tyﬁ + “t (K+) + (K H)tt'r = 0, (3.12b) .

: HyB +HT = - H, (3.120)

o / whers {
¥ i
. ' 1
, 1"[ = v T - -1 Ty -1 ‘
Q= vy (uy) R (uy) ' (3.13) :
,, i}- ‘I:\I
b v, tu(zeB)-x] = voec = () hee, (3.14) fg
k. iy !
i t T T “1 -
B : Ew (KH - R "C . (3.15) .
l] % ( )YY (u )yy z
b M i
N : !
4 J The arguaents of the functions H and u in equations (3.12) through /
f ; (3.15) are Y+B and T, and the last term in equation (3.15) is diffar- ;
b N antiated assuming Cwu(Y+B)-X to be constant. The term is a symmetric 3
¢ E nxn matrix containing second order derivatives of the transformation ;5
4 ¥ function u(Y). E
9 ¥ i
y !
i 4
4 g ! ﬁ
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j . _ A comparison of equations (3.12) with equutions (3.5) shows that
; the important changes in the Newton equations due to the transformation
i (3.9) are in equations (3.12a). The rest of squations (3.12) is formally
' identical to the corresponding terms Ln equations (3.5), if P(X,8) is
is replaced by H(Y,8). In equations (3,12a) we see three other replace-
ments: the eatimated'variance-covariance matrix R is replaced by Q.
the right hand side ~C: Lp replaced by =4, and the term (R?r)
replaced by E

,
oo isbkonts .

b ! The replacement of R by Q corresponds €O an application of the
| | linearized variance propagation formula to the transfurmation (3.9).
3 i The replacement of the right hand sides iz a linearired tranaformation
. \ of the residuals C into the Y-spaca. If the transformation (3,9) iw
il ' linear, then only these two replacements occur. If, however, the
i) ] transformation is nonlinear, then the last term ln equution (3.15)
; doss not vanish and, because it contains second order derivatives of
A ‘ u(Y), it can be quite complicated. Thim complication car offset
3 i algorithmic advantages gained by a simplification of other terms in
y the Newton equations.

g : Itaration algorithms and fermulas for the variances of the solution

¢ v again can be cbtained by manipulations of the Newton equations. Expliocit
foxmulas are given in the Appendix. We notice that second order
Newton-Raphson algorithme necesgsarily contain second order derivatives

: of the model function H as well as of the transformation funoction

,ﬂ f u(Y). The coding of the secend order derivatives can, of course, be

i avnoided if first order Gauss=Newtou algorithms are used. However,

varinnce estimates of the solution csa be caloulated to a first order

accuracy only if all the second ordier derivatives are available.

The author has carried out numerical experiments to determine
whether a solution of equations (3.11) instend of aequations (3.4)
has algorithmic advantages, The experiments were done with the
utility programs described in referance 15, The programs permit one
" : to carry out the calculations sither in torme of X, or in terms of Y,
R and to use elther Newton-Raphson, or Gauss-Newton algorithms. The
experiments were inconclusive. In some examplus the algorithms con-
b verged better when the problem was formulated in X, in other examples
B a formulation in Y=v(X) produced better algorithms, Howavar, the
i differences ln performance werse never significant. This result is in
i strong contrast to similar experiments involving transformations of
3 paramaters, In those experiments, a suitable parameter transformation
¥ often had a dramatic effeot on the performarnce oY the solution algorlthm.
« Some sxamples are given in the next section.

Another poasible benefit from nonlinear transformations of
observations could be a gimpler problem formulation. The complexity
4 of the normal equations is thereby of secondary importance, if one
'4 uses an available general utility program for their solution. However,
the model equations mist bs made available to the utility program,
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N i which means that the aquations must be programmed. Then one has the 3
P! ; c¢hoice to program either the funotion F(X,6) with its first and second
E { order derivatives, ox the two functions H(Y,8) and u(¥) w’:h their
4 : derivatives. If the transformation is nonlinear, then normally the 8
A { programming of H and u will not be simpler than the programming of F. ]
A : An exception may be the situation where the same transformation u(Y)
A i (e.g., polar-cartesian) is used for several problems with different
; : model functions H(Y,8), so that u(Y) has to be programmed only once.

We may conclude that in general a transformation of cbservations
offer little or no advantages over a formulation of the model equations 2
‘ in terms of the original cbservations. There are, howaver, other R
? usaful applications of such transformations. First, 2 graphical ¥
display of the results van bea clearer in terms of Y then in terms of 'Y
X, Second, and mors importantly, the transformations can be a con=-
venlent method to dexive a "falgified” problem that can be solved b
easily and that provides initial approximations to the unknown least 9
squures solution vectora, One can falsify the problem, e.qg., by using
a nonlinear transformation but linearising its effects on the problem

formulation. A simple and effective falsification is to replace the
problem (3.10) by

Y = w(X), (3.16a) B
H(¥+b,t) = 0, (3.16D)

| ' AN BERSES -
‘ b [uv(Y)R uy(v)]b = min, (3.16¢) s

i The formulation is identical to the correct formulation (3.10) only b
if the :ransformation is linear, but the normal equations for the
& false L:;oblem (3,16) are simple:

X o - K (r4b,0) = 0, ' (3.17a) ]
\Y:l . h.
4 KT, (14b,8) = O, {3.17b)
:{I‘ '}
g :
g H(Y+b,t) = O, (3.17c) -
ﬁf where ; t\
: Q= luy(y>1'ln[u§ w1, (3.18) 3
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This system can he much simpler and easier to solve than equations
(3.4) or the equivalent equations (3.11). 1Its solution is, however, 1
not the least squares solution but an approximate solution of unknown i
quality. ;

Initial approximations to the solution alao can be obtained by .é
other falsifications in addition to the one described, or inatead g
of it, Such falsifications are, e.g.,, assunptions that certain
obgervations are error free, that some correlations are zeroc, that
some model parameters hava prascribad values, eto,

. 4. EXAMPLES, The first example is a case involving transformation

: betwean polar and cartesian coordinates. We shall compare results \
that are obtained using the approach of the previous section with ;
results that are obtained by following suggestions by other authors.
In data processing literature one finds different suggestions. The
simplast onea is to treat the problem after transformation as if the
transformed quantities were observed. It is clear from tha discussions
in Section 2 that such an approach does not produce the least squares
solution, i.e., it does not minimize W{||c||}, even if the transfor- :
mation is linear. The most scphisiticated suggestionl:8,10 ig to -
apply the transformation (3.18) to R, i,e., to solve the system (3.17). o
As we have seen in the previous section, this approach yields the Y
least squares solution only if the transformation Ysv(X) is linear. i
The following example lllustrates the practical consequences of such !
a problem falsification. i

MR heria a2
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Let the observations be distancves rj and azimuth angles 6j, and v
let the model equations repressnt a straight line in cartesian o
coordinates. Then the model equations are in terms cf the original .
observations ‘

( rlsin¢l - g - brlcan¢1 - 0

rzsin¢2 - a - brzcos¢2 -0

F(r.¢ja,b) = < (4.1)

Treesveasansnidstvscssn

rnsin¢n -a - brncou¢n u 0

-

The trangformation of the observations into cartesian coordinates are

X, % r, cosp, .

Yi - :i Bin¢i I} im= ly 2' saeyp N, (4o2) ‘

1ho
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and the model equations are in terms of the transformed cbservations

» ,: ryi—a—bxl-o

1 ? yz -a-=- bx2 - 0

f ' H(X,Y:a,b) = < (4.3)
*% f ' esevscsemsevene '
11 ﬁ Yo~ 8 bxn =0

: : -

N j; ) The Jacobian matrix of the transformaticn is
33

- ; J = ' (4.4)

> ’ o *
@ 1 Jn
”i where \
. ! : 2(x,,y,) cosd, =-r,sin¢
‘ j Iy =31 ('r'l"{i') g ;1n¢1 ricowi @.5)
- ! 1’74 i i i
» i '
-1 { We assume for simplicity that all observations are independent
A f with estimated standard errors eyj and eyj, respectively. Then the
Iy estimated variance-covariance matrix R is the diagonal matrix
v ‘II
o2
3 rl
2

e R=~ | (406)
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g ' The transformed variance-covariance matrix § is amcenxding to equation
(3.18) the block diagonal matrix

B

» !

‘ é i
3 i Q, o i
: ) -~ T . '
;, : Q= JRT" = . (4.7) 3
'3 1 \ Qn 3

where \ 4

L )

2 2 2 2 .2 2 2 .2 ‘
e, coe ¢1+e¢irisin ¢i (eri-eq,iri)sintticowi )
(4.8) Y

& Q™

g i 2 2 .2 . 2 2 2 2 2 X
) (eri “¢iri)’in¢1°°“¢t eriein ¢i+e¢iricos ¢1 vi.
g] For a numerical example we take the ten points listed in Table i
;] I as obsexrvations and assume that thelr standard errors are =
|
A eri = 0.048, e¢i = 27.5°' i - l' 2, seuyp N (4-9) g

We made three adjustments., First, the r,¢~data were used
together with the model equations (4.1). In the wacond adjustment, P
the x,y-data were used toysther with the model equations (4.3) and i
y the transformation function (4.2) in a utility programl5 based 3
o on the normal egquations (3.1l). The results of both adjustments were fr
: identical, as they should be, and they are listed in Table 1II. The
Q listed standard errors of the parameters are the sguare roots of the
i diagonal vlementa of V., computed with formula (3.8), The correlation

t t 'ttt

rﬁ coefficient o, is the off-diagonal element of the correlation matrix

;5 Ct, defined by

; ,‘! - - 8
‘ﬁ C =p ¢ v, D ¥ (4.10) 3

where Dy is the diagonul matrix of Ve. The standard error of weight
. one is defined by

i
J 171 % 1 % 4
i‘ mo [ P C'R "C)* = [ ;1_-_9- 1) . (4.11) ,‘
1
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Figure la shows thae result of the adjustment in the ¢,x-plane,
i.e., in the plane of the uriginal observations. The accuracies of
the observations acre indicated by error ellipses around the observed
points. The adjustment is indicated by connecting tho cbserved points
with the corresponding corrected locations on the fitted curve, The
figure shows that all adjustments are in the direction of largest
uncertainties.

P S BT

L ' Figure lb shows the same result in the x,y-plane. The accuracies
A of the transformed observations are again indicated by error ellipses,

- corresponding to the transformed variance-covariance matrices Qi. In
i this presentation the adjustments seem to be in directions other than

4 : thoge with largest uncertainties. This is typical for nonlinear

F | ‘ transformations of observations. The object of the fitting is to

k- ' minimize residuals of the original observations. The presentation in

the x,y-plane is distorted by the nonlinearity of the transformation.

In a third adjustment wo used the x,y-data, the model equation
(4.3), and the variance-covariance,matrix Q, defined by equation (4.7).
The treatment, suggested L' Deming™ and other authors, was described
in Section 3, equations (3.16) through (3.18), as a falsification of
the problem. The numerical results of this adjustment are listed in
Table II. They are different from the previous results, and the
increase of m_ indicates that the ~olution is not optimal. We notice
also that the®correlation coefficient c . has changed its magnitude
and sign. b

Figure 2b shows the results of the adjustment in the x,y-plane.
It indicates that the adjustment would indeed bs optimal, if x,y were
the observations and Q was their variance-covariance matrix. However,
when the same results are plotted in the ¢,z-plane, Figure 2a, then
it becomes obvious that the adjustment has not achieved the goal to
i minimize the residuals of the original observations ¢,r. The treatment
B ' of transformatlions of observations in this form is a falsification
w} »f the problem. The rasults are approximations to the least squares
A solution, but since tha guality of the approximations are not known,
o they may be useful only as initial approximations for a least squares
4gi algorithm. However, in a case like this example, an initial approxi-
- mation could be simpler obtained, e.g., graphically by drawing a
L. straight line in the x,y-plane through the observations.
81

Next, we present an example for the linearization of parameters.
Let the model equation be

3ﬁ y - AP enp (S? =0, (4.12)

43

vl R R e v L b T e AR T g S ardl el e e e

TR I s - - -

L y..nm ERR T oM .
PR s i .....l. oy .w.s«- — - . R LS gl s v e I s e




where x and y are observations and A, B, and C are model paramaters,
An equivalant model formulation is

Juy ~ & « b lnx - %-.o. . C (4.13)

In equation (4.13) the purameters a, b, and ¢ enter linearly. One
can expect & much better performance of solution algorithms if
cquation (4.13) is used. The parameter transformation is in this

example

A=™ae,

B=bh, (4.14)

‘ C= ¢,

and the Jacobian matrix, needed in equation (2.23) is

2 o o
3(h,B,C)
3(a.b,0) 0 1 0 . {4.15)
! 0 0 1

i Another example is the trigonomatric model

y ~ A cos %“- - 0, (4.16)

An equivalent model is

L y - a gin(ex) - b cos(ox). : (4.17)
The corresponding parameter transformation is
; a = A pin(B/C),

b = A cos(B/C), (4.18)
c = 1/C,

RTINS e o e L
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with the Jacobisn matrix

QSA,BICQ - dl{a,b,0) l-l -
d(a,b,0) 2(A,B,0)
sin(B/C)  (A/C)cos(B/c) =(AB/c?)cos(Brc) \ ™t
= | cos(B/c) -(A/C)sin(B/C)  (AB/C®)ain(B/C) (4.19)
0 0 -1/c? .

In this example, the model (4.17) is linear only with respect to two
parameters. However, the difference o numerical treatments of the
problem is dramatic if one uses equation (4,16) or equation (4.17),
respactively. In numerical experiments we found that in order to
achieve convergence, one had to start with parameter values A,B,C
within few percent of their least squares values. Using the parameters
a,b,¢ and the model equation (4.17), one achiaves fast convergence,
e.g., with the initial values a=b=Q,

5, SUMMARY AND CONCLUSIONS. Manipulations of model equations
that produce simpler but aquivalent equations can greatly facilitate
the preparation of the problems (e.g., computer programming) foxr
utility routines. The manipulations can also improve the performance
of numerical algorithms., If the manipulations are marely algebraic
and/or involve nonlinear transformations of the model parameters,
then their application is straight forward and their implementation
simple. I£f, however, the manipulations include transformations of
observationsa, then one has to tranasform also the normal equations
correspondingly. Neglect of this transformation falsifies the problem
and produces results that are of unknown quality and equally reliable
as, eo.g.,, a graphical construction of a fitting curve. A correct
implementation of transformations of observations requires the pro-
gramming of the transformation function, including its first and zecond
order derivatives. It also does not improve the performances of
algorithms. Therefore, in most cases, it is more efficient to formulate
the model equations in terms of the original observations, thereby
avoiding the programming of the transformation function.

The need for second order derivatives of the model equations has
been often overlooked., In order to avoid the programming of these
derivatives, most authors suggest to use a first order Gauss-Newton
algorithm for the solution of the normal equations, instead of a
second order Nawton-Raphson algorithm. The performance of the former
may be often comparable to the latter, because even with more iterations,
the computing effort can be less due to the simpler eguations. Second
order derivatives of the model equations (and of the transformation
function) are, however, needed to compute the linear terms in formulas
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for variance estimates of the results. Their neglect cannot be
Justifisd cursory by the argument that linearirzed model equations are
already second order accurate and, therefore, their second order
derivatives are not needed. It can be shown that ths linearised normal
equations do contain these derivatives and, therefore, are needed in
the linearized variance propagation formula. Formulas for variance
estimates that do not contain second order derivatives are less than
first order accurate,
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TABLE I. OBSERVATIONS ¢ AND r AND CORRESPONDIMG
CARTESIAN COORDINATES

!
1
1

E

f

, :

g ¢ .‘V; x X Y i

% 206.6°  0.889  -0.50  -.025 |
§ 26.6° 1.342 1.20 0.60 :
| 26.6° ' ' 2,236 2,00 1.00

§ 26.6° . 3,354 3.00 1.50

| 26.6° ' 4.472 4.00 2,00

; 123.7° 1,803  -1.00 1.50

i 92,9° 1,952  ~0.10 1.95

§ 68.2° 2,693 1,00 2,50

[ 52.4° 4,100 2.50 3.25

J 42.0° 6,727  5.00 4.50

".

TABLE II. ADJUSTMENT RESULTS

Case 1 and 2 (Original and Transformed Problem)

—

am= 0,381 + 0,298

b= 1.141 £ 0.744 Cp ™ 0.015065

m, = 1.24541

Case 3 (Falsified ?roblcm)

a = 0,680 + 0,407

¢
f b= 1.837 £ 0,259 Oy = 0568659
t
m = 1.75646
i
The standard error of weight one, L is not included in the standard
errors of the parameters.
4
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Figure 2a. Falsified Adjustment in x,y Space.
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The data are shown with their one standard error allipses
and the adjusted curve is shown with one standard error

vonfidence Limits., The same results are shown in PFigure
2b in the cartesian x,y-plane.
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The transformed data are shown witi their one standard error
ellipses and the adjusted line is shown with one standard

error confidence limits. The same results are shown in Figure
2a in the ¢,r-plane of observations.
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APPENDIX

. We provide a set of iteration formilas that are derived from
the Newton equation (3.6) by algebraic manipulntions. First, wa define
the following matrices:

o=l

G = (l‘xR!‘x) _ (Aol)

A = RFGP -1 ' (A.2)
X X

I'm [1+mt(1<"'la')xxl'1 (A.3)

B w s [AC-RPTGF_] (A.4)

(] X X

E, = I's [RECGF, +AR(K'F) . ] (A.5)

1 ® 0t Xt '
7 T n

D, = X'F), ., - rtcrxn(x ")xx (A.6)
T T T

|:l = (K r)“ - n'tar“n(x lr)m= (A.7)

N = P°GF, - D, + D .E (A.8)
£t 1 0~1 .

The iteration equations are

NT = PIG(F_C~F) + D.E (A.9)

) 0”0 *
by T
K+K a(rxc—rho[rthn(x r)mlr-crxntx F) xx‘ (A.10)
e - E "E T . (Alll)

01

Numerical experiments have sho'm that the convergence of the
iteration is enhanced if the eguations are used in ¢ subiteration
mode by iterating alternatively on the parameters and residuals,
respectively. For paramcter subiteration only egquations (A.9) and
(.10) are used, assuming c¢=0., For residual subiteration one sets
120 and uses equations (A.10) and (A.1ll).
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In the variince formula (3.8) one usez N, defined by equation

. (A.8) and

" /-

" efi' T .
.@ § Another squivalent set of Newton-Raphson iteration equations are %

given in refexrence 13. None of the gsets are numerically supsrior to
¢ the other, and beth require subiterations of parameters and zeaiduals
¥ for efficiency. !

3 , Gauss-Newtor iteration equations can be obtained from Newton=

. _ Raphson iteration eguutions by setting all second order derivatives
K ‘ zexo. The convergence of Gauss~Newton algorithms is inferior, but

H : in some applications they have a larger domain of sonvargencse.

'3 Iteration squations for least sgquares problems with transformations '

! of observations can be obtained from the formulas in thia Appendix

by subatituting
Q for R

b | : A for C

? and

T
E for (K ')xx .

fﬁ“ / Expressions for Q, A, and B in terms of the model and the transformation
! functions are given in Section 3, aquaticns (3.13), (.14), and (3,15).
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ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI
SQUARE ALGORITHM

Richard L. Moore
US Army Armament Research and Development Command
System Evaluation Office
Dover, NI Q7801

ABSTRACT, This paper reports on the use of the least chi-square

algorithm for fitting data to uon-linear functions of the parameters.

A well known computer program of the National Institutes Health,
SAAM=27, has been modified to use this algorithm. Comparison of the
ordinary least-squares algorithm with the new algorithm have been
made on four different problems as fullows: Prassure waves in gun
chambers, control of aircraft yaw, a biomedical kinetic rosction
involving four measured components, and a very non-linear nuclear
reactor kirnetics problem. The praliminary results indicate that the
least chi-square algorithm is practicable, that the computing time is
increased for short problems, but evens out for long problems.

The least chi-square algorithm appears to be less failure prone
than least squaves and a test has been inserted in the program to
preclude any iterations which might tend toward maximizing the
autocorrelations as could occur when their initial value is large.

I, INTRODUCTION. It is accepted procedure in analysing the
goodness~of-fit of experimental data to a theory which 1is nonlinear
in the adjustable parameters to estimate whether the vesiduals are
consistent with being drawn from a normally distributed population in
a random sequence., A common atatistic to test the random sequence
hypothesis is the sum of the squares of the normalirzed autocorrelation
coefficients frequently called the Box-Pearce test., HKowever, if
these tests indicate a lack of agreement with the hypothesis, no
rationale has been available to modify the parameters to obtain a
better fit. A solution to this problem has been provided by the use
of a least chi square algorithm which estimates the parameters which
give the greatest probability that the residuals arise from a popula-
tion with variance o% » and are sampled from a random sequence.

I1. SUMMARY OF MATHEMATICS.

Following the notation of Aitken (1) and as previously derived by
Moore (2, 3), we define the following:

The transpose of a vector or matrix is indicated by a ' on the
symbel u',

e LN G DL N PRSP S

e e
, o AR,




! u is the vector of observed valucs, - q
is the vector of thaeoretical values corresponding to u.
; o is the vector of the estimates of tha unknown paramaters. i

p* is the matrix of the partials of y* with respect to g%. -
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The calculaton of (60) is done from the following expression which

1s the same as the usual non-linear least square interation excapt
for the matrix I , 1

i S
TR

i o T

(86%] = [P*" [ P¥]~! P* I u*,

In the usual case, f équals I,

Teg st emes e B Dea 1 AGTE T

- This expresaion has been programed into the Simulation And
Analysis Modeling (SAAM-27) (4, 5) program of Berman et. al, by post-
multipying P*', by I' , and letting the program proceed from that
point, with the data for px' being replaced in the memory by thée
product P*'I', The usual iteiration continues from this point. The
computer program resulting from this change has been designated for
| control purposes as SAACH, and has been tested on the CDC 6600 at
3 \ ARRADCOM, Dover, to determine the following questions:

.- 1. How much change is there in the final parameter estimates?
2, What change, if any, is there in the number of iterations?
3, What change is there in the time per iteration?

g 1 I11. EXAMPLES, Four problems of different origin which use

9 different mathematical models have ‘been run on the SAACH program to
answer the above questions. In the first example: Gun Chamber Pre=-
ssure Waves, the mathematical model used is the superposition of two
pressure waves generated by analytic models in the program, with the
adjustment of up to eight parameters to obtain the best fit to ob-

d served data., In the second example, an aircraft control system

) simulation, the mathematical model is a set of four linear differen~
4 : tial equations, simulating the Yaw Damper system on an aircraft.

¥ : These equations were solved by a aspecial procedure developed for
SAAM=27 by Berman ef al, (6), with up to four adjustable perameters.

;j . In the third example, a biomedical problem furnished as a test case
g ! ‘ by Miss Rita Straub of Brookhaven National Laboratory, the mathema-
4 tical model was a set of seven coupled linear differential equations

7¢i with five ad justable parameters; this was solved by the same method

g as used in the second case. In the fourth and final example: KEWD

< Kinetics, a simulation of the nuclear reactor transients of the

: Kinetic Experiment Water Boller, the mathematical model was an ex-

E: tremely non-linear set of coupled differential equations as described

& by Hetrick and Gamble (7). These equation were integrated by the

_J fourth order Runge-Kutte integration procedure of SAAM-27, with only
1 one adjurtable parameter.
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I11-1 Gun Chamber Pressure Waves. Unusual pressure wavas sug-—
gestive of an acoustic wnve suporposed on the normal gun chamber
pressure-time curve, have oc:zurred in tests of the XM21ll propellant
charges at zone 3 for the MI0l projectile in the 155mm gun,
(Knutelski, (8)). Analysis of these wavas was initiated by Mr. B,

~ G, Knutelski of the Large Caliber Weapom Systems Laboratory using the

SAAM-~27 program. A parallel analysis was made by the author using
the ‘SAACH program, In order to have as little bias as possible
injected iInto the comparison, the Knutelski model, data, and
procedure was folloewed as closely as possible, The resulting data
fit was later improved by using more data and improved models. The
history of this analysis is important because it illustrates the
problems which arise when no prior knovwledge is available about the
best-fitting model.’ (This example is the only one of the four
exanples for which prior knowledge was not available.)

The first case was run using the data shown as asterisks in Figure
1. This figure shows the theoretical fit by the following model:

P = P(L)sin{2n(®(2)t + P(3))}
+ P(4)sin{2n(P(5)t + P(6))} .

Fig. 2 shows the theorectical fit by the same model as above using the
Least Chi Program (SAACH) with five autocorrelation coefficients (BGX
1.101). Table 1 indicates the number of iterations to convergence
and the final values of the parameters (the initial values were the
same). The value of the sum of the squares (Xlz) is given for
comparison, as well as the autocorrelation coefficients up to rank S.
Case BCK had slightly lower values of sums of sgquares, but the chi
square was much smaller for BGK 1,101, (The symbol X will be used
for the greek letter Chi for the rest of this report,)

Recause not all the data points available were used in this
preliminary analysis, additional data were obtained and entered into
the computer using the same model and same initial conditions as in
the previous runs. In this case (BGK 3,002) the least squates
fteration stopped at seven iteratlons; as shown in Figure 3, the fit
was poor and the convergence obviously false. The least chi square
fteration, BCK 3,102, using the same¢ data terminated at 14 iterations
with an obviously better fit (Fig 4), but yet not a good eyeball fit,
The results of both cases are also shown in Table 1. The
autocorrelation coefficients are large for case 3,102, and indicate
the general lack of fit,
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Bocause of this obvious lack of fit in BCK 3,102, the modal was
changed to tha following,

P - ?1 exp{ - (ﬁ-tl) ’/_201’}I
4P, exp { - (t-£5)2/20, } X sin{21f (t-ty) + 1/2

Three parallel cases were computed once the fit was gnod enough
to permit iteration. Because of computing difficulties which arose
when trying to converge on six or seven parameters, the iteration vas
initially restricted to four parameters: Once the fit was good and
had converged using these four parameters, their final values ware
used as initial values for a six-parameter fit., Finally, all eight
parameters were allowed to vary.

The results of this sevies of analysis are plotted in Figs 5, 6,
and 7. The case numbers are BGK-3.30356301-0, 3,30356511-5 and
3.30356511-10 respectively, The first has no autocorrelation
coefficlonts; the second, 5; and the third, 10. The parameters for
these casecs are given in Tably 2, (note that the last three digits
only of the idontifier are used lcre). The estimated errors are the
cstimated standard deivations based on the value of the sum of the
squares. In the case of 511-5 and =10, the value of XT2 was used
rather than the sum of squares. The statistical validity of this
procedure has not yet been established. '

Results shown in Figures 5, 6, and 7 indicate that the apparent
fit to the data 1s best for the case of five autocorrelations, (Fig
6). In this figure the autocorrelations were weighted higher than in
Fig 7, where ten autocorrelations were used, and of course much higher
than in Figure 5, where no weight was given to the autocorrelations.

It 18 clear from Table 2 that ordinary least squares, case 301
indicates a small fractional standard deviation as compared to thae
other two cases, but yet the fit to the data is not as good as seen
from its plot, (Figure 5), ‘

The last row of Table 2, gives the values of 02 | the axperi-
mental vari{ances assumed for these cases. These were arbitrary
nunbers in this case, because the precision of the measurament system
is probably much greater than the value given i.e., the variances
should be smaller, However, if smaller values were used, such as

-when case 511-10 is compared to 511-5, the weight on the sum of the

squares is greater but the goodness of fit appears to decreane.
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Table 2 also shows the effect of least chi-square in terms of
number of iterations, and computing time. When five autocorrelations
were used, as in case 511-5, only & small increase in number of
iterations is found and a moderate increase in computing time as com-
pared to 301, 1If ten autocorrelations were used, as in 511-10, the
number of ifterations increased, and the time increase was 1.8 times
greater, giving about double the increase in time for double the
number of autocorrelation coefficients.

Table 3 shows tha ausocorrelationa up to order 20 for the three
cases, The values of X;*, xzz, and X7 for the number of
autocorrelations used (0, 5, 10) is shown in the last rows of this
table.,

The difference in the assumed experimental variances accounts for
most of the difference between x12 for cases 511-5 and 511-10, 1If
the experimental variances had baen the same, xlz would have been
62,96 or 57.62. Case 511-5 appaars (in the figures) to fit better
because the first five autocorrelations as well as most of the later
autocorrelations are smaller,

I11-2 Aircraft Control Systems. The block diagram of a typical
problem of this type is shown in Fig 8. To optimize the design four
parameters mav be adjusted to give the best fit to a desired response
curve, These yarameters are 6,,Ky,Ty, and K . These correspond
to the parameters L(0,4), L(4,1), L(4,2) and L(4.3)., A previous
analysis of this example using SAAM-23 wae available. As a result, a
completely unbiased comparison of least squares and least chi squares
prodecures was difficult to ensure. Two different approaches wera
used on this example. First, the "data"--corresponding to the desired
curve--was used "as is" for comparison with the calculated response,
Second, a vector of a random sequence of normally distributed errors
from a population with variance of (.033)2 was added to the data
vector to simulate the effects of sampling error; this may be
considered to represent an allowable errcr or tolerance in fitting
the curve.

In the first approach, the cases to be compared are 2-6 and 4.
Case 1-6 was a reference run which adjusted four parameters, and
started near to the final values, It iterated three times and took
23,6 sec to complete. A gimilar case, 2-6 used the same starting
point and used six autocorrelations coefficients, It failed to im-
prove the fit in but one iteration, primarily because it attempted to
increase the autocorrelations in its attempts to improve the fit.
(Several cases of this type were found which led to a modification in
the least chi-square algorithm, to be discussed later). The data on
the parameters, autocorrelations, and chi square are given in the
first column of Table 4., The fit to these data are shown in Fig 9,
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In an attempt to understand this problem various strategiur were
tried, but the results wera nearly 211 similar. Case 4 and 4.1 are j
typical. In these comparisons the number of adjustabla parameters ;
was reduced to three, the value of the experimental variance was 1
increased to 1.0 and the rank of the autocorrelations was taken as 5, !
6, and 12, In the least squaraes case, case 4, as indicated in Table i
8, the calculation converged in six itmrations, taking 11.2 sec. In
cuse 4,1, with the same initial point, the three attempts itarated
for six iterations, for the same time, 11,2 sec, but because the .
autocorrelations were large, and the value of Xy was large ;
comparad to Xlz, they all eventually diverged from a good tit. :
These results indicated that the algorithm was not reliable when the.
autocorrelations were large at the outset, To corvect this, an '
internnl algorithm will be added so that value of a which is ’
1/(X ~2X2%) will not be allowed to be greater than .5, It is ;
beliavcd that this change will prevent situationg of this kind from . ]
A ; arising in the future, but the effect of this change has not yet been

: i fully tested, To determine whether the least chi-square technique is
‘Q ; valid for the Yaw Damper calculation, the second approach, the

] addition of Monte Carlo errors to the desired response curve, was
used as a test,
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For this second approach, a random sequence was added to each of
the data points., The value of c was set at (. 033) gix autocorre
lations were used for the problem which was 1denti£ied as CONRLM
4,011-6, Another run was used on the same data with the standard
least squares algorithm. Fig. 10, (CONRLM 4.012) shows the fit
obtained for the data and is typical of the results. Table 4 shows
the number of iterations for each case. It took &4 iterations for the
ordinary algorithm to converge, and only two for the least chi-aq,
algorithm with six autocorrelation coefficients (CONRLM 4,011-6),

The time for one iteration was 8.2 and 8.5 sec respactively. (Part of
the increase in time for the least chi-square case was due to several
attempts in both iterations to improve the £fit by reducing the step
size.) As shown in Table &4 the parameters L(0,4), L(4,2) and L(4,3)
appear to be different by significant amounts, and the difference

in the "significance” of the two results is considerable, (The
autocorrelations for case 4,011-6 appear well within the random
range.)

© -t o A s 7y e =

ja I11'3 Brookhaven Example, A sample tast cass was received from
Miss Rits Straub of Brookhaven National Laboratory. The exact naturas
L of the problem was unspecified but from the form of the differentcial
‘ equatioas given in table 5, it appears to be a kinetic problem in
which the material in componeant one decays into components two to
five, and component two may change into component one, Component
seven is cumposed of components three, four, and five. Although the
"8" and "K" parameters may actually be unknown, they were assumad

aoe = rcisl SRS SRS

)
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r : known, becsuse the present version of the program will not iterate

: ; either type of linear parameters with the least chi-square algorithm.
4 : The data were available for the amount of components 1, 3, 4, and 6

b as a function of time, (where component 6 is the sum of components 1,
g , 2, and 5).

1 - Both the run with no autocorrelations and the run with 5
b ! correlations (KJE 1.0023-5), took 7 iterations to converge. The

- : results for the two cases are compared {n Table 6, Since the valua

L | of Xi% (31.24) is large compared to X3¢ (3,04), the major

) : emphanil in this case was on reducing the sum of squares, and thus it
¥ ! is similar to the case run with no waight on the autocorrelations.

final values of the parameters of the two cases, Figs 10, 11, and 12
_ . show the graphs of the data fit to the components 1, 3, and 4.

B . (CQmponont 6 shows an exact fit to data points and :horafore a graph
of thia component is not provided.)

'é : As would ba expected, thare is only a small difference betwean the
1
|

g , I1I~4., Reactor Kinetics Example. Thie example illustrates two
W things: First the use of the least chi-square algorithm, and second
i ! a good fit between data and a physically incorrect model. Hetrick
. and Gamble (7) proposed a non-linear feed~back term proportional to
. the energy in the reactivity of the KEWB reactor to describe the
R effect of void on reactor shutdown, Although this model gives a good
« fit, later oxperiments (9) whare the void amount was inferred from
b measurements and where the thermal effects on reactivity wera also
carefully measured, showed that shutdown was due to thermal, rot void
effects. In the simulation, the affact of the energy on void forma-
tion was simulated by the parameter L(1l, 1). The functions corres—
pond, in numerical order, to the functions used in the simulation:
(1) Nuclear reactor power lavel, (2) Mean tempaerature, (3) Mean void A
volume, (4)-(9) Delayed neutron groups, (10) Not used, (l1) Energy |
released to that time. Tha reault of the iterations is shown in 3
Figure 13, a logarithm plot of theoretlcal and experimental nuclear ,
power. In Table 7, three different cases are shown: E

1
'% : Case 1,003=0 was ordinary least—-squares. The values of the ;

autocorrelations and chi=-squares are shown for comparison with the
other two cases, Case 1,.005-3 used three autocorrelations with a
small value of the experimental variance thus resulting in a large :
value of X;%, Both case 1.007-6 and 1.003-0 use 1 x 107 for the )
experimental variance thereby reducing the emphasis on the sum of the §
squares of the errors. All of these runs took four iterations to 4
converge, .

4 Cases 1.003~0 and 1.005-3 give almost exactly the same results. ]

On comparing 1.003-0 with 1.007-6, a difference is found in the value -
4 of the adjustable parameter L(11,1), The value of chisquare total is
smaller for 1,007-6, and thus this result would be chosen over that
of the other case,

[
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The value of the chi-square for the nusocorrolation (122) is
much smaller for case 1.007-6, although X;¢ gs slightly larger for
the same case--thus illustrating the trade-off between getting the
ainimum as in ordinary lesast squares, and reducing the autocorrela-
tions as in least chi-squares. The data for Case 1.003 ghow the
values for R(1) to R(6) for comparison purposes. The data show that
the sug of squares does not increase from one to other appreciadly,
but X7, the Box-Pearce statistic, does change apprecishly. Each
of the calculations gives a total chi aquare waich is too large to be
consistent with the residuals being drawn from a random sample.

I11-5, Comparison of Computing Time, Table 8 summarizes the

comparison of the number of iterations to converge, and the computing
time required. As dean in the previous discussions, the number of
iterations was usually about the same, except for two cases~=~the case
4,1 under the Yaw Damper, where the iteration with least chi square
failed to properly converge, and for the XM211 Pressure Curves vhere
the ordinary least squares took more iterations or failed to converge
As seen in the last column, for all the cases except the case 4.1
under the Yaw Damper, the computing time 1is comparable, with a ten-
dency for the computing time to be longer for least chi square than
for leaat squares, The relative difference is greater when the
original total computing time is short. This just means that, as
would he expectad, it takes a larger fraction of the camputing time
to compute the matrix I  and post multiply it into P*' for cases where
the time cf iteration is short,

IV CONCLUSIONS. Based on four different types of non~linear
theoretical models for data anslysis, our results indicate that:

(1) Least chi-square 1s practicable for non-linear analysis.

(2) The computing line for least chi square is longer for the
models which uee less computing time, but because the convergence of
this iterative procedure is somewhat better, the number of ifterat'ons
(and particularly the number of "tries" per iteration) is reduced,
thus keeping the total computing time about the same, Models with
longer integrating time would expect to benafit more from least chi=-
square,

(3) With one exception as given below, the least chi-square
procedure appears to be less prone to failure to converge.

(4) When the autocorrelation are large and their weighted sum is
large compared to the chi-aquare for the residuals, the iteration
tends to produce a maximum value of the autocorrelations. A test has
been devised to prevent this situation from occuring.
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(At the time of final editing and review of this paper, an arrot

was discovered in the programming of the calculation of the variance
of the autocorrelations, V; ., The error amounts to only a few
percent but would make it a'fficult to raproduce the prasent results.
It is believed that the main thrust of the results of this paper
remain valid,)
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f
N : CASE BGK BGK 1,101 BCK 3.002 .BGK_3.102
; g TMBER OF o e
] ITERATIONS 14 11 7 14
& ! P(1) 15,95 15,89 - .15.0 .19.48
% : P(2) 209.9 203.7 332.6 308,00
P(s) -722 0767 -4- 16 2097
: i P(4) 1.719 1.700 +5.67 . . 1,38
| ] (%) 2,93 x 103 3,00 X 103 3.06 x' 103" 3,27 x 103
1, '; P(6) -1.885 '20196 "1080 ' "600
i ¢ o
-§ ! R(1) 1 614 .586 - 843
-3. ' 2 275 252 - 646
“r ; 3 - 077 -|076 - .‘028
h 4 -. 186 =175 - 219
_Af 5 = 209 e 192 - o°b6 .
: X,2 15,5 16.1 - 27,6
Xpl 30,018 25,0 - 81.6
SICNIFICANCE —— o4 3.5

Table 1. Results of computer 'tuns on XM21l Pressure Oscilations
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4 :
: G
[
3 CASE 301 511-5 511-10 :
g ORDER .
] 1 717 «680 «696 y
; 2 477 427 443 A
{ 3 4286 V247 0248 ;
‘ 4 .058 027 .013 E
! 5 'y 113 -0136 -.160
| f 6 -, 246 -,258 -.291 ]
) é’ 7 e 303 - 315 et} 3“6
5_ 8 e 322 ~ 334 bt 361 x
[ ]I‘ 9 e 307 ™ 312 - 3“2
i : 10 -4 245 -4 240 -.276 ;
i i 11 -, 130 -, 104 ~.155 g
, { 12 -, 011 .031 -.035 E
! j 13 .069 .130 +048 |
! | 14 137 217 .123 b
i 1 15 L} 110 0203 0106 1
} | 17 -.028 057 +0004 4
i ; 18 s 141 - 068 "0090 “
.I h 19 ’ “e 202 "'-149 -.130 j
; 20 e 235 “e 205 - 145 '
1 X2 57,9 62.96 116.2 i
q Xp2 - 33,01 62,4 !
‘ Xpor? - 95,97 178.6 .
i
t ]

Table 3. Autocorrelations and Chi-Square for final model of XM211
Pressure Oscillations.

X2 based on the first 5 Autocorrelations for Case 511-5, %
and the first 10, for case 511-10 1
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CAGE

2~6

4,012-0

6.011'6

No. Of I“R!

4

2

L(0, 4)
L(4, 4)
L(4, 2)
L(4, 3)

18.6

53.1
+605

10.27

17.70

53,11
1,094
6.204

18.58

53.02
0,605

10.26

R(1)

P W -

. 769
<431
o144
‘0040
--159

-.111
-,230
013
061
'.124
»029

-.110
-.232
014
068
'0124
.030

Sum of sqs

»00275

.01l
24,78
24,79

-,959

«250

03147

.03138

28,82
2,49

31,31
-, 087

(.033)2

Table 4,Results of Yaw Damper Calculations
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| . _ap_
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) ($)a((s“0)1 + (S°L)D - -
ap
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ITEM/CASE KJE 1,0021-0 KJE 1.0023-5 4
L1, 2) 2155 .2199 4
L2, 1) 4527 YY)
L(3, 1) .0431 .0431 =
L(“. ’.) ;0252 00251 \
L(s, 1) .0743 .0824 ¥
| R(1) 122 ~.086 i
: R(2) ,065 ~,052
i R(3) .009 034 A
; R(S5) 179 ~.168 b
| Ny
' X2 31,22 31.24 E:
: X,2 3.99 3.04 b
Xror 35.21 34,28 4
) Significance -,026 ~,086 .
Table 6. Ruult:l of Brookhaven exampie calculation. Autocorrelation, 4
x22 and x-r for case KJE 1.0021~0 computed for comparison.
i :
g ITEM/CASE KWB 1,003-0 KWB 1,005-) KWB 1,007-6 3
¥ L(11,1) 5.318 X 10°% 5.3183 x10~4 5.262 X 1074 {
i R(1) .782 .782 .786 b
4 R(2) Y b 453 -
v R(4) -, 204 - -.170
a R(s) -.316 - "274
R(6) -,235 - 290
X2 121.14 1.2 X 109 121,89
Xp2 36,71 35,0
Xp2 157.85 156.89
TABLE 7. Results of Kinetic Experiment Water Boiler Calculations
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ADJUST AUTO~CORR NO OF

CASE PARAM RANK ITER TIME (SEC)
KEWB KINETICS
1,003 1 0 4 84,
1.005-3 1 3 4 81,
1,007-6 1 6 4 89.
YAW DAMPER
4 3 0 6 11,2
4,1 3 5,6,12 6 11.2 (FAILED)
4.011 4 6 2 8.5
4,012 4 0 4 8.2
BROOKHAVEN
1,0021 5 0 5% 14,9
¥M211 PRESSURE
BOK 6 0 14 6.5
BGK1.101 6 5 11 11,

3.002 . 6 0 7 11.31=/FALLED

3.102-5. 6 5 15 23,

3.102-5 6 5 11* 1802

TABLE 8. Cémparison of Computing Time.
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ON THE POWER OF BIRNBAUM'S TEST

Ray E, Schafer
Hughes Aircraft Co., Fullarton, CA 02634

ADBSTRACT

Z, W, Birnbaum has proposed a hypothesis test procedure which, under fairly
general conditions, does not require explieit kn;:wlédge of the critical values .
of the test statistic, In this palper we investigate the power of the test in a “T
\‘rarlety of situations, In particular we have considered situations in which the
underlying observations have normal and chi-square related distributions, We
show that the asymptotic power of this test is identical to the classical test using
the same statistic and that the Birnbaum test achieves iis asymptotic power very
rapidly. '

The normal case is considered both for complete and censored samples,

1,0 INTRODUCTION

The classical hypothesis testing problem involves the sampling distribution of
the test statistic (say S). For example, to test

Hy: DF (distribution function) is N (uo, 1)

versus

HI: DF is N(u 1 1) My > Hy
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where N(u, 02) ineq.na normal with mean u and variance 0'2 .

the test statistic is S= X, the sample mean, and the CRITICAL VALUE, say S*,

is

8% = Xt m Ko+ 2y, (5 Here Z, . is the (1 ~a)

n l-c
quantile of the standard normal distribution and n {s the random sample size,
The sampling distribution of § = X 18 well tabled so that it is easy to obtain
S* = X# {he oritical value, . |

In many situations however the sampling distribution of S is analytically
intractable, For example consider the Weibull DF;

Fy® =1~ oxp[__- (x/b)"_'] ,» byo, x >0,

= 0 elsewhere .

The sampling of the maximum likelihood estimate of o, say &, is intractable,
Howe.ver. the sampling distribution of 8/¢, while intractable has a distribution
free of b and ¢, 'Thus, tho DF of &/¢ could be obtained (indeed was obtained by
Thoman, Bain and Antle, 1969, Technometrics 11, 445-460) by Monte Carlo
methods, The Monte Carlo approach is quite expensive; involving some 10,000
to 50,000 &/c's for each n,
Z, W, Birnbaum ("Computers and Unoonventionar Test Statistics," 1874,
Reliability and Biometry, Eds.s F. Proschan and R. J. Serfling, SIAM, 441-458
and "Testing for Intervals of Increased Mogta.bility, " 1975, Reliability and Fault
Free Analysis, Eds,: Richard E, Barlow, Jerry B, Fussell and Nozer, D,
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_Singpurwalla, SIAM 4138-426) has proposed a remarkedly simple procedure in the
situation of testing

Hyt DF of 8 = Gy(s)
versus

H,: DF of S= Gl(n)

where G is analytically intractable, Birnbaum$ test avoids the expense of a large
Monte Carlo simulation, Here we will invesiigate the power of the Birnbaum
test (B. T.) in a variety of situations,

2.0 B, T, DESCRIPTION
We discuss in this section a right (upper) tail hypothesis test, Obvious modifica-
tions lead to left-tail and two~tail situations,

Let F(x, 6) be the diatribution function for random variable X and let 8, be a
test statistic for 6, based on a sample’ of size n. Suppose Go(sn) and Gl(an)
are the distribution functions for Sn when 0w 00 and 6 m 01 respectively. The
B.T. requires that, for all real 8, G, () H Gy(%,). and for at least one S,
Gl(sn);‘Go( ’n)' Suppose that a random sample of n observations, Xyv coer Xy
{s avallable which has been used to calculate a single value of 8, say u"l'l. and

we wish to choose between Hoaa -00 and le Om 01 on the basis of this observation,

Birnbaum has shown that, if it is possible to obtain a random sequence of N
observations of Sn using only F(x, 89)» & hypothesis test may be performed by
selecting a number, ¥ 0< Y « 1, and observing the number, M, of these N
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observations which are greater than s: with rejection of H.o if and only if M/N 3 v,
Birnbaum shows that the size of his test is

am 1+ [NV +N)

where [NY] is the greatest integer  N¥,

In practice, one performa a B, T, of exact size o as follows, Choose 0< ¥ <l,

the size desired, and choose an integer N such that (N + 1) is a pesitive integer,

- d et

Generate N observationa of Sn under Hy and observe M/N, Reject Hy if M/N

U T

S (a@+1)-1)/N="7,

ERpe

T T S TR AT T E B ST T

3,0 CASES INVESTIGATED
The advantage of the B, T, is that a kmowledge of Go(ln). the sampling distribution

of 8 under H, is not required, The N values of 8, may be genorated by Monte

0
Carlo methods directly from I'(x, 00). The cost of the E. T. 18 a function of both

' n and N, and may be substantial (although much cheaper than a '"full' Monte

Carlo simulation of Go(un))lt oaloulation of s, must be performed by iterative

methods, Hence, it is important to know how the power of the B, T, varies with
nand N,

We have investigated the power of the B. T, for test sizesa = 0,91, 0,05 and

B TR IS R T

0,10: for sample sizesn =056, 10, 20, and 50 and for N= 9, 18, 39, 99, 199 and
499, It should be noted that, fora = 0,01, no B, T, exists with N= 9, 19, 39 and

for o= 0,05, no B, T, exists with N= 9, In fact, no B, T. of size o can be obtained
unless (N+ 1)~} & o, 1
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We have restrioted our investigation to maximum likelihood estimators (ox
functions thereof) and to the following distributions and parameters,
a) Normal distribution - tests for the mean, ¢ (known o), with complete
aamples, and tests for the mean (unkrown o) with Type II censored samples,
b) The general class of tests for which S, has a chi-square distribution
This includes tests for ¢ (known or unknown 6) in ihe normal distribution and

testas for the mean of a one-parameter exponential distribution,

4,0 POWER OF THE BIRNBAUM TEST
Intuitively, it is clear that letting N-» s is tantamount to obtaining the exact sam-

pling distribution of Sn' hence, the asymptotic power with respect to N should be
identical to the claskical power based on the same statistic,

(
"

The B, T. power under H1 is |

1-8( =PM/Ng¥|H,).
0 EN'VJ E
N 1 N~y
- |2 (1) (L - Gols,)) Gols,)"'d Gy (8.
= ju=0

NY :

1 [N7] X

- Z ( | ) @ - w o™ a g, )
0

=0

where J (u) = Gl(Gal(u)). Birnbaum has proven that
Um@ -gM) =1~J,(1 7).

N=sw
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It is easy to show that this is equal to the power of the classical test based on the
game test statistic,

5,0 METHOD OF CALCULATIONS

A statisticlan is seldom interested in knowing the power of a test to even three
decimal piaoos. Clearly, the requirement of 6xtreme agouracy in power deter-
mination {ncreases the cost of computation, We have chosen to relax the acouracy

requirement so that more distributions and sample aizes could be studied,

All of the results were obtunéd'on a CDC Cyber=173 computer, Where power was
obtained by numeriocal integration, the trapezoid rule was used with 200 equal
intervals over the domain of integration, Where the limits of integration extended
to e, the heuristic limits used were the 0,0001 and 0, 9999 quantiles (3., 895, for
example, with the 'normal distribution), Al_ & check on the numerical acouraoy of
the integrations, both "tails" were evaluated, That is, we determined 1 - 2 and

g scparately. In every case, the sum of the two was in the domain (0, 998, 1,008).

Where Monte Carlo methods were employed, the random number generating
algorithm was the multiplicative congruential method suggested by Knuth
using modulo 24'8 arguments, For the Monte Carlo simulations:

a) If it was necessary to determine olassioal power by simulation, 10, 000
observations of Sy when a-ao were obtained and utilized to estimate the 0,90, 0.85,
and 0. 99 quantiles of the distribution under H e Then 10, 000 observations of 8,

when 0=6, wore generated and compared with these quantiles.




b) To determinz the power of the B, T. by simulativ., 2 single cbservation of

Sn (onol) was obtained and compared with N observations of Sn (oaao). The number

M of these N observations greater than Sn(9== 01) was recorded, andif M N 5

(a(N + 1) - 1)/N, the null hypothesis was rejedted. This complete procedure was
repeated 2500 timea.

It appears that a B. T. using N=199 or greater could substitute for a classical
test on the mean of a normal distribution with virtually‘no loss in power, This
may give a practieing statiolan some confidence in using the B.T. for problems
where the distribution of Sn is not obtainable, or obtainable only at great expense,

6.0 NORMAL MEANS (KNOWN¢)

Of course, no one would ever use a B, T. in place of a Neyman-Pearson test for a
hypothesis about the mean of a normal distribution with known ¢. The p.d.f. of
S, (e, the sample mean) under both the null and alternative bypotheses and
hence the power, is known analytically. But such an artificial case is valuable
for studying the B, T. for preoisely this reason, We may observe the relative
power of the B.T. in comparison to the classical test as a function of N, n, and
the classical power, to get a 'feel" for the behavior of the B, T. as a function of

sample size.

Let X be N9, crz). Wa chose a8 the null hypothesis N(0, 1) and as alternatives
¢<0.1, 0,2, 0,5, 1.9, and 2.0. The power of the B, T. was obtalned analytically

by numerical integration,
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The efficiency of the B.T. Relative to the classical test was remarkably high, sven
for small N, Over the entire domain of samples sizes, n, the B, T, power was
never less than 856% of the olassical power., For N = 199 and 4989, the B, T, power

was never less than 85% of the classical power. As an example, for N = 199, we

obtained:
nwjb ne 10
f=0,6 6=1,0 6=0,6 1,0
B.T. Power 0.29 0.71 0.46 0.93

Classical Power 0,300 0.728  0.475 0,936
n_=_20 n_= 30
B.T. Power 0.71 0.99  0.87 1,000

Classioal Power 0,723 0,098 0,971 1,000

7.0 NORMAL MEANS (UNKNOWN o) WILH CENIORER SAMPLES
The olassioal power for hypothesis tests on normal means with the standard

deviation unknown, but constant, is available for complete random samples

through tables of the non-central t-distribution. Here, we examine Type II cen-

sored samples, where no such power distributions are available. Given a oen-

sored sample,

Xar Xey o0 X Fen

t —
the sample mean, ¥ and standard deviation s 2 Z(xm - x')z/r are caloulated,

An auxiliary function A is needed, The value of A depends only on r/n and on
2

- &2/ - Ry 2 The M. L, E. for 0 {8 % = A(x! = x

@
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Hypothesis tests of the form Hy: 6 =6, vs. H,:06, were exai.ined for the cases
(6 - 60)/0’- 0.1, 0,2, 0.5, 1.0 with sampl- sizes 5, 10, 20, 50 and censoring
at 0,8n for n=5, 10, 20 and at 0,4n for n = 10, 20, 50. Both the classical power

and B, T, power were obtained by Monte Corlo simulation, as described previously,

The B, T, with N = 199 or 499 will provide eskentlaliy equivalent to that of the

clasaical test for 9.11. of the parameters and sample sizes examined.

8,0 JTHE CHI-SQUARE CASE
Many hypothesis testing situations involve test statistics which have a Xz distri=-

bution, e.g., tests on the variance of a normal distribution (known or unknhown
mean) and tests cn the mean of an exponential distribution. The power of the
olassionl X 2 test is available in the literature from tables of the non-central

x2 distribution, But we have explored this case for the same reasnn that the
normal distribution was examined — the B, T, power may be obtained analytically
and its behavior with respect to N may lend credence to the assertion that the
B.T. is essentially as powerful as the classical test for a variety of probability

distributions,

Many hypothesis tests involving the Xz distribution are equivalent to

where Sﬂ is the test statistic, m is degrees of freedom and O<a<l for a right-
tail test, a > 1 for a left-tail test. We examined right-tail {ests for m = 5, 10,
20 and for as2/3, 1/2, 1/3, 1/4, a = 0,10, 0,05, 0,01,
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The B, T, power was remarkably olose. to the clagsical power, even for N = 9,
In fact, the smallest ratio of B, T. power to classical power for all the combina-
tions investigatad was 0.87. A sample of results for N = 199 anda = 0,05 is:

me=§ | ' m =10

a /4 1/3 1/2 2/3| 1/4 /3 1/2 2/8
B.T. Power 0,72 0,69 0,34 0,19 | 0,01 0,80 0,51 0,27
Classioal Power 0,736 0,595 0.4 0,194| 0,918 0,807 0.518 0,272

| m =20

al/d 1/3 12 2/8
B.T. Power 0,89 0,86 0,78 0,39
Classical Power 1,993 0,960 0,785 0,401
Hence, the !2 data support earlier conclusions that the B, T. with & reasonable

value for N, say 199, is essentially as powerful as a classical test,

9.0 QONCLUSIONS
We have investiéated the power of the B, T. with respect io the power of the cor-

responding classical test in a variety of situations, These situations included
complete and Type II censored samples forthe commonly used test afzes and

frequently used sample sizes,

It seems clear that the B, T. offers cost savings when the sampling distribution of
the test statistic is unknown and must be obtained by expensive methods.
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: In addition to the fact that the asymptotic power of the B, T,, as N—=« , is equal

i S i AR ot

to the power of the classival test based on the same statistio, the B. T, has some \

{‘ interesting characteristics, In all cases the relative power of the B, T. was quite

L . lazge even for N as small as 9 and generally for N 2199 the power was 95% of 1

_ ‘ the asymptotic power or greater. Also, generally, the relative power of theB, T,

increased as the alternate hypothesis got further away from the null hypothesis. f

i Finally the B, T. relative power inoreased with N,
1
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ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacskaylo and Joseph E. Swistak
Night Vision and Electro=-Optics Laboratory
Fort Beslvolr, Virginia 22060

Abstract. An experiment was conducted In which the error and time
response performance for designating the angular location of a single
flash of light on a circular pattern of lights were measured. Fourteen
nalve subjects were Instructed to record as accurately and rapidly as
possible the angular position of an activated light, They were allowed
only one attempt for each of six consecutive trials. The data are
presented in terms of mean time of each response per trial and mean
error per trial. The mean error, as & function of mean time, appears
to be bounded by an error=time response equation; E = ~20.88 log(t/15.37),
where E {s the mean angular error In degrees and t is the mean time In
seconds. Surprisingly, the subjects responses as measured in either
time or error did not follow classical rpaction time or learning patterns.
That Is, while time of response remained falrly consistent from trial
to trial, the lowest error occurred on the first trial while maximum
error consistently occurred on the fourth trial. B8ased upon the six
trial limit used in the experiment, it Is bellieved that the nalve
subjects, first trial performance is the best for designating the
angular location of & single flash of 1ight.

Introduction. The philosophy which tank crewmen have always adopted
has been "make your first shot count because you may not get a second
chance.'"" This philosophy has become more acute with the recent advent
of ''SMART" weapon: whlch ride beams of light to a target. A system was
designed which would allow tank crewmen to detect and radially demarcate
the source of desfgnation by a coherent 1ight source. The system s
designed to operate by having a tank crewman observe a clrcular array
of lights on a panel. When the tank Is illuminated by a laser beam,

a corresponding azimuthal light {s activated. The crewman would interpret
and record the azimuthal position for appropriate tank action. The
effectiveness of the crew would depend upon (1) the speed and accuracy
with which the azimuth is read out, and (2) the panel configuration used
to d'splay the azimuthal information. The panel used In this experiment
was designed from a technical consideration based on the clrcular
representation of equally spaced light bulbs (Fitts and Seeger, 1953).

Method.
Subjects. Fourtesn U. S. Army enlisted men of varlous ranks were

randomly selected from a large group of Individuals to serve as subjects.
None had prior training in tanks or tank related equipment and none had

prior experience with the display panel bsing tested, The fourteen subjects
werre then randomly assigned to one of two groups comprised of seven subjects

i : ' - — :‘
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Apparatus. The stimulus display panel consisted of a 9cm dlameter
ring og 36 equally spaced light bulbs. This panal, portrayad In Figure |,
el was positioned on ths front panel of a box 2Ccin long, 10cm high and 5cm

5 deep. The light bulbs were angularly marked from zaro to 360 In ten
degree Incramsnts In a clockwlise direction with zero at the top.

ﬁ? Responses were recorded on a response panel. This consisted of a

@5 : 12cm circle drawn on a 20x25cm sheet of plain paper. The circle was

i divided Into quadrants and marked Into degrees as follows: Zero degrees
e (0°) was marked at the top. In a clockwise dirsction, each quadrant

n was successively marked 90°, 180°, 270°, and agaln at the top, 360°.

A pencll was used for marking angular positions with an X" on the circle.

é Procedure. Each subject was brlefad Individually prior to his

; participation In the expsriment., They were brought into a room which
' contained the stimulus display panel, a banch, chalr and assoclated

equipment required to actlvate the lights of the panel. Each subject

was briefed as follows:

| "As accurately and as rapidly as possible, determine the anguiar

f* location of a Jight when It comes on and mark with an ''X", that position

4 on the circle on the shast of paper In front of you, The sheet of paper was
: referred to as the response panel for purposes of the study. Each subject
Lo was allowed two familarization trials to be sure they understood the

" instructions. Each subject was then given six trials. The sequence of

a l1ights for trials one to six are presentad In Flgure 2.

[ ] [ ]
.....

FIGURE 1. 20 REPRESENTATION OF STIMULUS
PANEL COMPRISED OF 36 LIGHTS
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¢ PGURE 3, SAMPLE RLSPONSE PANEL SHOWINR THE ORCER IR WHICH
THE LIGHTS WERL PLASHED XD THE ASSOCIATED DEGALES
. OF ARG FROM THE ORI,

Each subject saw this same sequence. A new response panol was supplliad
for each trial. The time Interval from when the }ight came on to when
the subject markad the pane] was measured by a stop watch to 0.01 seconds.

s e v

' The stop watch was controlled by the axperimenter and It wes assumed o
that the reaction time error Introduced was fairly constant. k

yi Upon complation of a set of six trials, the subject was dismissed. b
e The subjects tested versus those not tested were kept In separate rooms ;
b unt!} all seven subjects In a group were finlished. One group (A) of i
! seven subjects was tested on one day, the other group (B) of seven k

subjects was tested on the following day. )

ST

The angular positions marked on the response panels were scorad
In degrees by using a transparent template graduated to 0,5 degrees and
superimposed on the marked response panel. The accuracy of the marked
position was then measured to + 0.5 dagrees which was the resolution
of the scoring template.

" Results and Discusslion.

The mean tlime of response for each trial are presented In Flgure 3.

T T P

MO EAPSES
THNE W8 SECONDS
P~ i I R -

FIGURE 3. MEAN RESPONSE TIME TO DESIGNATE ANGULAR LOCATION .
OF A FLASH OF LIGHT ON SIX CONSECUTIVE TRIALS. /
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These mean times and assoclated standard deviations are presented In

T‘ble 1.

vary significantly over the six trials.

trials having elapsed.

In general, It appears that the mean time to respond did not

There does appear to be a gradual
decrease In response time from trial one to trisl flve, but an Increase
on trial six. There was no readily obvious reason for this Increase

on the sixth trial, t.e., no subject took an inordinate amount of time

It would also seem that fatique could not be a factor with only six

TRIAL NO. 1 2 3 4 S 6
MEAN TIME (SEC) 379 394321334 |260] 33
STANDARD DEVIATION | 1.41 | 2.03 | 1.31-] 149 | 1.00] 1.23

TABLE 1, MEAN TIME AND RELATED STANDARD DEVIATION REQUIRED
. TO DETECT AND DESIGNATE THE ANGULAR LOCATION OF A
LIGHT FLASHED WITHIN A 360° ARRAY OF LIGHTS ON SIX
CONSECUTIVE TRIALS.

The mean error in degrees for each trial are presented In Flgure &4,
The numerical values and assoclated standard deviations are presented In
Table 2. Trial one had the smallest angular error.

The amount of error
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then Increased with the greatest error occurring on the fourth trial,
after which, the error decreased. The error on the sixth trial was ;
very near the error on the first trial, A large part of the error 3
on trial four can be attributed to the performance of two subjects who had

TRIAL NO. 1 12 §|]4]5]¢ E

MEAN ERROR (DEGREES) | 7.8 | 119 | 169 | 285 | 108 T

STANDARD DEVIATION 62 | 48 | %4 | 83| 102 GJTT

TABLE 2. MEAN ERROR AND RELATED STANDARD DEVIATION ASSOCIATED
WITH THE ANGULAR DETECTION AND DESIGNATION OF A LIGHT
FLASHED WITHIN A 360° ARRAY OF LIGHTS ON SIX CONSECUTIVE

TRIALS.
32 errors of 94.5 and 68.0 degrees, on that trlal. Howaver, even with these ?l
L two values removed from the data, the mean degrees of error for trial b

- _ four remains at 16.2. |f this level of error !s the more accurate, then &
3 It can be said that the third and fourth trlals were the worst In terms i
P . of parformance, and the dotted portlion of Figure & would more aptly

b represent the performance on this task. The mean error, as a function

= of mean time, (Flgure 5) appears to be bounded by an error=-time response

i aquation: E =-20,88 log(t/15.37), where E is the mean time In seconds..

i This curve provides somewhat of an upward estimate of angular srror given
ﬁﬂ : an elapsed period of time for a response - the greater the time, the lower
¥ the error. '
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. Howsver, regardless of which curve In Figure & most accurately

4 represent the performance which could be expectad on the task described
- In this study, It Is Interesting to note that nelther set of duta

b follows the expected learning pattern described in learning llterature.
- Normally, one could expact accuracy to be poorest on the first trlal,
g repidly improve on the next few trials and then continue to Improve

b at a slower rate unt!) some maximum level was reached. The numher of

3 trials required for asymptotic performance to occur would depend upon
% the degree of difflculty of the task. The present task should have
3 required 6-8 trials. It appesrs that asymptot!c performance was being
v approached on the sixth trial, but what is truly Interesting Is that
s the performance on the first trial was actualiy better than on the sixth.

In terms of an untrained subject being able to determine anguler
direction of designation, the first attempt he made would be the most
accurate of his Initial six attempts.

The concluslon of this study must be that the Inltial attempt
by an untrained gunner would be at least as accurate as one who Is
starting to asymptote.

Referances

'%f : Fitts, P. M. and Seeger, C. M., S~R Compatibility: Spatlal Characteristics
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IMAGE INTERPRETATION PERFORMANCE
ON FOUR STANDARD TYPES OF AEROGRAPHIC FILM b

RONALD L. JOHNSON and PAUL J. SCHOOL |

US Army Mobility Equipment Research and
Development Command, Ft. Belvoir, Virginia 3

ABSTRACT

This study fnvolved trained operational image interpreters who j
analyzed highly controlled aerial imugery from which the effects of ,
type of film u?on target detection were determined. One-hundred-and- |
one operational image interpreters generated the following mean target 7
detection probabilities: Color Infrared - 58.6%, Color - 55.4%,
Panchromatic - 44,7%, and Black and White Infrared - 43.4%. At the
0.05 significance level, target detections were affected by film type
as follows: Color Infrared differed significantly from both Panchro-
matic and Black and White Infrared films. Color differed from Black
and White Infrared. The combined mean of target detection for Color
Infrared and Color differed significantly (0.01 level) from the combined
mean for Panchromatic and Black and White Infrared. Therefore, use of
Color and Color Infrared imagery results is significantly more accurate
day image interpretation.
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1.0 INTRODUCTION

The purpose of this study was to quantitatively determine the target
acquisition capabiiities by image interpreters (IIj of the following fiim
types: Aerochrome MS 2448 (Color), Aerochrome Infrared 2443 (Color Infrared),
Plus X Panchromatic 2042 (Black and White), and Infrared Aerographic 2424
(Black and White Infrared). Image interpretation {s defined 1/ as the
examination of images of objects on fiilm for the purpose of identifying

the objects and deducing their significance.

Approximately 30 percent of the intelligence gathered in World War 1I
was derived from aerial photography. The requirement for accurate imagery
intel11gence 1s escalating as weapon systems and tactics develop and become
more refined. To obtain this information, 1t 1s becoming increasingly more
common to use color, color infrared, and black and white infrared fiim.
Strandberg 2/ states " color aerial photography offers much promise in the
gathering of imagery intelligence, because humans have the capability of dis-
criminating between an almost infinite number of different colors, but at most,

only a few hundred different shades of gray".

2.0 TEST SITE

An 820 acre site was selected. This site is used for equipment
evaluation by the US Army. Military equipment and camouflage devices
such as nets were randomly located throughout the study area. The
soi1 contained a high moisture content and the color was reddish-tan. The
brush was gray and brown in color. Included within this site were building
complexes, open fields, dense woods, and clumps of green grass. The
forest composition was a mixture of oak and pine,

3.0 TEST IMAGERY

Photographic images consisted of a 13 frame serfes of 9" X 9" positives
taken with 60% forward overlap. One frame series was acquired for each
of the four standard types of serial film.
are summarized in Tabie 1,

F{1m and filter characteristics
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| ' TABLE 1
f FILM CHARACTERISTICS

4 ; RESOLVING SPECTRAL  RESULTANT
R g POWER (T.0.C.)* SENSITIVITY FILTER SPECTRAL
i g FILM TYPE  1000:1 1.6:1  RANGE (NM) CUT-OFF SENSITIVTY (NM)

: Plus X
Panchromatic | 100 50 250-700 Zeiss Yellow | 490-700

N : 2042 490 NM
2 (Black &
B A White)

e o Infrared
i Aerographic 80 40 Zeiss Orange 550-900
g 2424 400-900 550 NM
3 (Black
Vi & White)

Aerochrome

MS 2448 80 40 400-700 seiss Clear 400-700
) (Color) Activig
i No cut off

3 Aerochrome 63 32 400-900 Zaiss Orange | 550-900
¢ : Infrared 560-NM
y 2443
# (Color)

2 *Target Object Lontract

Ll A KC-4B camera system with a 6 inch focal length lens was used. In all
R - cases except black and white infrared fi1m, standard fiIm/fi1ter combinations
were employed. A zeiss orange filter was used with the black and white
infrared fiIm instead of a red filter; to increase the spectral response,
and therefore, the information content of this f1Ilm type. Al1 imagery was
- X nathered during four overflights (one per film type) at an altitude of 1500
feat ahove ground between the hours of 1100 and 1400. Therefore, the sun
3 angle effect was negifgible. The photographs were taken in February, and the
X weather was clear and sunny. Each 9 1nchmghotograph covered a land area

of approximately 124 acres. The total number of tairgets present oy detected
for each strip of imagery were determined by three senior image interpreters.
They performed detailed and exhaustive analysis upon the imagery. The
results of which are presented in Table 2,

.
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TABLE 2
TOTAL MILITARY TARGETS DETECTED FOR EACH TYPE OF FILM

R T e N

FILM TYPE NUMBER OF TARGETS
Plus X Panchromatic 2042
(Black and White) 46
Infrared Aero$ra hic 2424 80
(Black and White
Aeochrome MS 2448 44
(Color)
Aerochrome Infrarad 2443 47
(Color)

Eet- ey e e

Variations in the number of targets detected between film types
(ground truth) are not significant. They were apparently due to siightly
different flight 11nes flown by the photgraphic aircraft.

4.0 METHODS OF PRCCEDURE

The Pseudo-Isochromatic Plates for Testing Color Perception, developed
by the American Optical Corporation, were given to each II in order to
insure that the interpreters were not color deficient. A total of 101
operational US Marine Corps image interpreters participated in this study.
The participants were randomly divided into four groups, one group for
each type of film. The assumption was made that the four groups, due to
the Central Limit Theorem, contained interpreters of equal ability. Each
IT was instructed to perform detailed image analysis to detect military
targets such as jeeps, trucks, etc., and was allotted 45 minutes to analyze
a selected f41m strip. Each II viewed only one strip of f1im, and
consequently only one film type.

5.0 RESULTS
The percentage of military targets detected by the image interpreters
for each of the four types of film was calculated. These data, along

with the assocfated standard deviations, 95% confidence intervals, and
sample sizes are presented in Table 3.
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TABLE 3
STATISTICAL SUMMARY FOR MEAN PERCENTAGE OF TARGETS DETECTED BY FILM TYPE

FILM TYPE MEAN PERCENTAGE STANDARD 95% CONFIDENCE  SAMPLE SIZE
OF TARGETS DEVIATION LEVEL - (# of observers)

DETECTED
Lower Upper

Plus X

Panchromatic | 447 16.2 8.1 | 5.2 26

(Black &
White)

Infrared

2352“?3?21& 43.4 18.4 3.9 | 50.8 26

& White)

Aerochrome

?gofg:? 55.4 22.2 46.1 64.8 24

Aerochrome

{3;¥§C§d 20431 a6 17.6 51.4 | 65.9 25

An analysis-of-variance 4/ of the mean values shown in Table 3 was
performed and the results are presented in Table 4.




TABLE 4 I
ONE WAY ANALYSIS-OF-VARIANCE FOR MEAN PERCENTAGE OF TARGETS DETECTED

FROR_FOUR TYPES OF AERIAL FILN ;

QURCE OF VARIATION _SQUARES  FREEDOM _  MEAN SQUARE _ F-RATIO i
ﬁypes of Aerfal Film| 4,428.8864 3 1,476.2955 | “4.2351 -é
ithin Types of |
erial Film 33,812.6291 | 97 348.5838 é
Eg;g1 38,412.5125 | 100 |
Critical F |

* 0.05, 3, 97 = 3.27

The data presented in Tablie 4 revealed significant effects between the mean
percentages of targets detected and the type of aerial fiim. The degree of
this relationship was determined by individual comparison employing the t
statistic, These results are presented in Table 5.

TABLE 5 :
INDIVIDUAL COMPARISONS UPON THE MEAN PERCENTAGES OF TARGETS DETECTED :
i Plus X |
i us \
i Panchro- [Degrees | Infrared Degrees | Aerochrome | Degrees | Aerochrome | Degrees | §:
i of Aerograahic of MS of Infrared of :
.}_ﬂzﬂ_frgednnL_zszs B/ FPEﬁdnmL~ZA$&JhﬂuuL_Ersﬂdnm;LZAAS.ﬂnlnn_.Fceedmn ‘
Plus X
Panchro=
matic 2042
B/W
Infrared '}
Aerographic :
242aB/W | 0.279 51
grchrone
Aol 1.938 | 43 2.0085% | 46
ercchrome
Infrared
2443 Color | 2.932 | 50 3.028* 50 0.553 65
v ritical value for gignificance: “0.05,43 = 2.017; '0.05,45 = 2.15; <0.05,46 = 2.014;
F tp,09,50 = 2.010; %.05,51 = 2.009.

* Indicates significance < 0.05 level.
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: The data in Table 5 indicates that at the significance level o = 0.05,
i the mean detection of targets on the Color and Color Infrared film, was
greater when compared to the mean detection of targets in the Black

and White Infrared film type. The mean detection of targets by image
interpreters on color infrarad fiim was also significantly greater

(< 0.05) when compared with the mean detection of targets on Panchro-
matic fiIm. An even more significant relationship (o = 0.01) was i~und
when the means of the Color and Color Infrared filwms were combined and
compared with the combined means of the Panchromatic and 8lack and White
Infrared. Table 6 contains the means for the number of targets detected,
as well as the 95% confidence intervals and sample size. Table 7 contains
the results of the analysis-of-variance performed on the data of Tablc 6.

- 6.0 DISCUSSION

Lridac. il 3
PURRING -t IO

From these results, and assuming the interpreters to be of equai
experience levels, 1t was statistically (a = 0.05) determined that
the use of Aerochrome Infrared 2443 f{ilm resulted in 2 greater mean

o A LDy Ll i A ‘Iﬁ‘ e i 3, et e g gt

- percentage of target detections than that of either Plus X Panchromatic
L 2042 or Infrared Aerographic 2424. Aerochrome MS 2448 film also allowed
L statistically (o = 0.05) greater mean number of targets detected than that
. of Infrared Aerographic 2424. The mean number of targets detected was _
P combined for the two color films and also for the two black and white films. %
They were then statistically compared against each other; it was determined :
that they differed at the 0.01 level. The task involved in this study
was basically one of searching an unknown area of film for the detection
of military targets, some of which were embeded in trees. The resulting
mean percentage for target detection on coleor films complements some of
the conclusions of a US Naval Technical Bulletin 5/ which states that
color photograph provides the most benefits in a area being searched for
unknown or unlocated targets. The bulletin also states that the detect-
ing of partially hidden targets {is aided by the use of color imagery which
provides details within the shadows. Strandberg stated that atmospheric
haze reduces the advantages of color film over black and white when high
obliques or horizon-to-horizon panoramics are taken. Therefore, both color
and black and white imagery may be required. It is interesting to note
that 64% of the image interpreters who analyzed the Aerochrome Infrared
2443 fi1m stated that, with the exception of a brief session in school,
they have not had further experience with it. Forty-two percent of the
image interpreters made a similar statement concerning the use of color
film. Accordingly, 1t may be that given additional experience with these
f1Ims, the mean percentage of targets detected would show an even greater i
disparity between color and black and white aerial fiIlm than the results ;
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TABLE 6

STATISTICAL SUMMARY FOR PERCENTAGE OF TARGETS DETECTED FROM THE COMBINED
MEANS OF COLOR AND BLACK AND WHITE AERIAL FILN

Mean Pnréentage Y5% Con!{dence Interval| Standard _ggmp1ﬂ
ze

Fiim Type. | of Target Detected | Lower Upper Deviation
Combined :

Color : 57.1 50.5‘ 63.6 19.8 49
Combi ned

Black & '

White 44.0 38.5 49.5 17.2 52

Table .7, below, contains the results of the analysis-of-variance performed
in the data of Table 6,
TABLE 7

| | ONE WAY ANALYSIS-OF-VARIANCE FOR PERCENTAGE OF TARGETS DETECTED FROM THE
-t COMBINED MEANS OF COLOR AND BLACK AND WHITE AERIAL FILM

§ Source Sums of = [Degrees of | Mean i
q _ Squares _|Freedom Square | o !
3 Between Combined |
p Color and Combined . 3
i : Black and White Fiim 4,282,0657 1 4282.0657 | 12.4833 1
i -
) Within Types of - b
& Aeriul Film 33,959,4467 99 343,0247 .
8 .
] Total 38,241.5128 100 2
1 Critical Value: T o1 1 g9 = 8.29 .,
¥; * indfcates significance < 0.01 level 3
.
0
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obtained from this study. Therefore, the quality of day imagery intelli-
gency should incresse with the increased use of Aerochrome MS 2448 and
Aerochrome Infrared 2443 film by image interpreters. The use of Infrared
Aerochrome 2424 f11m for gathering of day imagery intelligence is not
Justified by the results of this study. Should Aerochrome Infrared 2443
not be available, or night photography using artificial 1ight sources is
desired, Infrared Aerographic 2424 fi1m may be of value.

7.0 SUMMARY

We quantitatively compared the target detection capabilities of 101,
US Marine trained, operational II's. They analyzed the same targets
photographed with the following four types of film:

Aerochrome MS 2448
Aerochrome Infrared 2443
Infrared Aerographic 2424
Plus X Panchromatic 2042

We found:

a. Aerochrome infrared images resulted in significantly greater
(a< 0.05) mean percentages of targets detected than Plus X Panchromatic
and Infrared aerographic images.

b. The mean percentage of targets detected with aerochrome
images was significantly ( < 0.05) greater than that of the Infrared
Aerographic film.

c. The combined mean number of targets detected with image types
Aerochrome M5 and Aerochrome Infrared was significantly ( a= 0.01) greater
than that of the combined mean number of targets detected from Plus X
Panchromatic and Infrared Aerographic imagery.

From the above results it is concluded that the accuracy of day
imagery intelligence will increase with usage of Aerochrome MS and Aero-
chrome Infrared imagery by II's,
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NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES
AND BAYESIAN PARAMETER ESTIMATION

Warren E, Stewart and Jan P. Sgrensen
Chemical Engineering Department
and Mathematlcs Reamearch Center

University of wWisconsin
Madison, Wisconsin 53706

New algorithms are described for Bayesian estimation of parameters in
nonlinear models of multiple~response systems. Modal and interval estimates
are provided for the parameter vector § of the predictor model, and for the
variance~covariance matrix ¢ of a Normal error distribution. Allowance is
made for gaps (missing values of responses), such as commonly occur in

practice, Two chemical examples are analyzed,

INTRODUCTION

Realistic models of multivariate phenomena often relate several predicted
responses to a common set of parameters. Multiresponse experiments are re-
quired to establish such models, but frequently yield irragular data which
ara difficult to analyze by classical methods.

Bayes' theorem ig a good starting point for parameter estimation in these
situations. The multivariate error distribution can be estimated concurrently,
whereas it has to be prescribed when least-gquares methods are used. Thus,
the Bayesian approach allowe more objective parameter estimates, if aufficient
data are provided. An excellent general account of this approach is given by
Box and Tiao (1973).

Bayesian inference deals with a data array {y ) = y, amodel for E(y)
with parameter vector § , and an error distribution model. 1If a Normal errox
model is used, with variance-covariance metrix o , the unknown elements of

g will appear as additional parametirs. 'he full set of parameters can be
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estimated optimally by maximizing the posterior density p(e.cly); confidence

_.._
e Ty T g

: regions can also be caloulated from this function.

| i In certain cases, tha posterior density can bes integrated analytically

b s

to obtain the marginal density p(g|¥). Box and Draper (1965) accomplished

this for multivariate Normal exroxr distributions and rectangular data structures

_.k.g_‘v._

(Table la), For block=-rectangular structures (Table 1lb}, p(gly) is the prod-

LT
e s :.i'—i = i' i .

cated data structures often occur, however, such as that in Table le¢, for

-; uct of the Box-Draper densities for the individual rectangles. More compli-~ %
i

which P(QIX) cannot be expressed in closed form, Therefore, in this paper

LW Y N

wo use the full posterior density p(g,glg), which has a closed form for any
i finite data structure, !

Inspection of the parameter estimates and residuals often suggeats

; alternatives to the postulated model., Therafore, parameter estimation should

L3
afa g

: : not be viewed as an end in itmelf, but should be followed by critical examina-

tion of the model and investigation of any promising alternatives. Interesting i

-

el X R

| predictions or unresolved differences between models will naturally lead to

(X

further experimenta.

S S Bt AR 7t T el el il MR T B
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PROBLEM FORMULATION

et

Consider a set of independent experiments, u= 1l,,,.,n, in vhich a k.
table {Yui} of observed responses have been obtained at known settings fﬂ

{§u} of the independent variables. There are m 1linearly indspendent

kinds of oblcrvationu; thus the index i ranges from 1 to m , but in
each experiment some values may be missing as in Tables lb and le.

The observations in the uth experiment are regarded as a sample from
a population of the form ‘é
. Yot ™ £, (%,00) + gy o (1) ;
' The functions fi‘*u'g) are models for the axpected responses E(yuilg)' 1
The residuals €44 in the uth experiment are treated as a random sample %f
from an m-variate Normal distribution,; this gives the probability density
(Wilks, 1962)

Tt (2)

-m /2 -
Plgylo) = 2m ¥ g |2 expiad f o7 g,

Here £y is the ¢olumn vector of error variables a1’ "' €yum with dummy
zerces inserted where observations are missing. Correapondingly, 9y in

obtained from the full variance-covariance matrix, g = {oi } , by sub-

J

atituting Qummy elements Gij whenever observation yui or yuj is

misging. Here 5ij is unity when im=j, and zero otherwise,
: The joint error density model for the set of n experiments follows

directly from Equation (2):

n “m /2

n(am ¢ Igul"l/2 exp(~4 ¢X 0”& ). (3)

p<5|9'2) - uml €u Ju Eu

Insertion of Equation (1) gives the corresponding density in observation

gpace:
n -m /2
-1/2
plyle, @ =0 (2m o |7
¥ ~'~ u-]_ ~u (4)

n m m ij
1 « exp{-} uzl 121 jzl 00 lyyy = £, (@1l y = £, ()10,
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o

Here the functions f, ,(8) stand for £, (4 ,8) evaluated at the known

settings L of the independent variables, The Utj are the slements of

the precision matrices g;l. The right=hand texm may also be regarded,

by Bayes' theorem, as the likelihood function for § and o when eval-

uated with given obsexrvaticns vy .

The usual factorization oi the prior density p(8,g) is assumed,

p(8,0) = p(8) plg) (5)

and a locally uniform density p(8) is assumed in the region of appreci-

able likelihood. The latter assumption requires some care in the parame-

trlzation of the model. The prior density of g 1is taken from Box and

Drapar (1965):

plo) = |gl-(m+l)/2 ) (6)
Bayes' theorem then gives the posterior density
p(figly) = p(g,9) ply|s)
- c[gl-(ml)/z [ ; Igul-l/zl N
ual

n m m 13
texeicd uzx iZl jzl Tu Wy = fyg (@1l = £y (01

in which ¢ is a proportionality constant. All that the data reveal about
the parameters § and ¢ is contained in this density function,

Point estimates of ( and ¢ are obtainable by maximizing the poatarior

density just descoribed, or by minimizing the function

8(y) 2 §(8,0) = =2 ln p(B,o]y) + 2 In ¢
-~ ~ -~ n~~ ~

(mel) 1n |o| + J 1n Jo |
~ WU
uml

(8)

n m m ij
+ 1 1 I o
uel iml jml

over the permitted region of 6 and o . Here

~ ~

yyy = £y (O ly, = £,(0)]

is a column array of

the model parameters 91, ...,ep and the independent elements of ¢
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The latter are taken from the lower triangle of ¢ in row order, i.e,

; q’p-q-k - °:Lj with 1 >4 and k = J + i(i-1)/2. Thus, the total number

i of parameters is q = p + m(m+l)/2.

§

i If the matrix ¢ were believed to be known, i.e., if a sharply focussed ¥t

‘ prior density plg) were assumed, then S(J) would reduce to B8(8) and we

) £

. would have a least-squares estimation problem with just p parameters. 1In §

‘ pxactice, one seldom knows ¢ accurataly; hence, the full Bayesian solution

is recommended. %

‘ p
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PARAMETER ESTIMATION ALGORITHMS

Several algorithms are described here for obtaining suwnary irnforma-
tion from Equation (8), These algorithms are part of a Fortran IV package
available from the authors,
1, Counting Algorithm

Before analyzing S wae count Equations (1) to see which paramaters
can plausibly be estimated from the data, We first try to match each

parameter ¢ in ¢ with an cbservation pair (yuk'yuj) of a veplivate

k)
experiment (i.e., an experiment which has the same oxpected response values
a# a prior experiment in the data set), If this process cannot be complated
for a given k , we then try to match each remaining errur parameter dkj ’
and each model parameter er in the function pairs [fuk(g), £uj(g)], with
a non-replicate cbservation pair (yuk'yuj)' Finally, any remaining model
parameters er are matched with remaining non-replicate observations, If
the matching can be completed for all elements of ? , We procesd with the
estimation, Othexwise, the full sat of pnrametoés cannot be eatimated from
tha data,
The counting algorithm is a logical Gaussianelimination, This test

is a useful diagnostic, but iam not infallible, since the actual rank of the

estimation equations depends on the numerical values of x, y, and ¢.

2. Minimization Algorithm
A modifled Newton method is used to find a minimum of S(J). Let Vo
be the value of ¢y at the start of an iteratlon. A correction vector

(wl - wo) is computed by minimizing the local quadratic expanaion (see

Appendix A for derivative expressions)

2
E(w>-s<wo>+-§%o<w-w0)+-a W= vg)" ol (v v (9)
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E &
y !
- |
? % over a user-specified rectangular region around ?o + The region is chosen ? EE
3‘ % small enough to ensure that 5(?) is a good approximation to the function : ;
_g é S(f) of Equation (9). A search is then made fgr a minimum of 8 in the % _E
gé : interval of positive definite o on the line from y, through y, 1 this ; %;
% g gives the wtarting point for the next iteration., The calculation continues | %
% i until two successive line-minima agree within oonfidence intorvals calculatsd ' ig
;é ' from Equation (14) for each parameter. ' | '&
§ ‘ k
:3 3. Response-Independence Test 3 &
'ﬂ Box and co-workers (1973) have pointed out the need to tast the responses = i
}i for linear independence. Preferably, one should parform this test on the ‘}
?i ; residuals lyui - fui(e)l' which might bacome linearly dependent in certain ;
%ﬁ _ regions of 9 « In the present procedure, such linear dependence is readily . iP
%; . detected during the inversion of g at the start of each lteration. The _?
%} i calculation can continue if all pivet elements (Stewart, 1973) found in this ’&
f? E inversion are greater than a specified fraction, say 0.1, of the corresponding i
‘% ] elements AT i
i 4
g 4. Confidence Regions
.g t Equation (8) gives the simple form ;
E. ! p(?l!) o exp(=-} S(?>1 (10) f
3- ; for the posterior deneity function, or "confidence Aensity", Use of Equation :
é i {9) gives the approximation ;
'E pbly) = expl-dty - DT At - D1, (11) s
:% ’ valld in the neighkorhood of the minimum point a . Here A is the qxq s
3' : matrix (positive definite since 8 is at a minimum) with elements
v
- R 2 ;
3 Ay, =4 3@9];3%;— . (12) {
é v
il )
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camputed as described in the Appendix, Thus, near the optimum, the param-
eters are Normally distributed with variance=covariance matrix g-l . If

Equation (ll) is used as an approximation for all values of ¢ , then the

confidence intervals for Normal distributions can bea applied. For example,
the ellipsoidal region
=0T Rty-9 < xPiq (13)

roughly approximates the 100(l ~ a) percent highest-poaterior-density region,

or joint confidence region, for | based on the given data. The intervals

-~

oy = By l7 2 %) g axge™ () (14)

roughly approximate the 100(1l = o) percent ¢onfidence intervals for the indi-

vidual paramaters, (a = 0.05),

1

For symmetric 95 percent confidence intervals
erfc (a) has the value 1,96,

Equation (l4) is more reliable than (13), since the integration used to
obtaln it is less affacted by the tails of the posterior density funetion.

More accurate intervals can be obtained, but with greater effoxt, by numerical

intagration of Equation (7) or (10),
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RESULTS FOR RECTANGULAR DATA STRUCTURES

If every experiment gives a full set of observations Yyrreoe ¥y ¢

then Equation (7) takes the form

m o m
p(8,aly) « |°|"(m+"+:')/2 expl-¢ [ | ot Vij‘°’] (15)
- ~ iml jml ~
in which
n

Integration of Equation (15) over the region of positive definite o gives
the marginal density function

p(8ly) = |v(e)| ™2 (7
as shown by Box and Draper (1965). We wish to compare the estimates based
on this function with those obtained from the full density function of

Equation (15).

Setting p(8|y) stationary with respect to its parameters gives

3 1n |v(o) | W
e e egle el EXZ vij-——ii-o k.l'...'p (13)
90 28
k i3
when uge is made of the Laplace expansion of iv + dvl. Here the vij are

the elements of the matrix v » .

Setting p(e,o|y) stationary with respect to its parameters gives, after

use of Equation (18),

d 1n p(8,0]y) v, , (8)
_2 ae“' b N = Z oij -—ian'ja—&—- o k - l'...'p (19)
k i k
_, 3 1n p(8,0]y)
2 -—————;:—#—ﬂ— g (min+l) -i%; (in |o])+ —J%: Z E oijvij(e)
a0 30 - 8" v 1 9 ¥

£ (2 = 8 ) [=(mirel) o o+ vra(Q)l = 0

r-l,...,m 5‘1,.--,1‘ »

R RURTLS o gt L b R
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Equation (20) gives, at the stationary point,

~

vl’.‘ﬂ (9)

Ips ~ men+l  ° (21)
Hence,
%% w (m+n + 1) vi2(B) . (22)

Ingertion of Equation (22) into (19) gives Equation (18) at the stationary

point of p(e,oly). Hence, for rectangular daota structures, the same values

i : of § and ¢ are obtained whether one maximizes p(e,oly) or p(ely).
l,l ~» ~ L -~ ~ ~ -~

/i ) Of course, the marginal confidence regions for 0 c<¢an be eatimated more

b directly in the latter cass. The normal equations based on p(ely), given

! by Stewart and Sgrensen (1976€), are convenient for this purpose.

The covariance estimates in Equation (21) are maximum-density values,

and thus differ from the expectation values E(crlly) unless n=m=p im 4
~ 3

) : very large. If expectation estimates of the Url are desired, one can com-

¥ ' ! pute them as the corresponding moments of the normalized postaerior density

P(e,cly)-

EXAMPLE 1, Kinetics of a Three-Component System 3

Consider the chemical conversion of initially pure species 1 to species }

2 and 3 in a batch isothermal reactor., Simulated data for the system are

given in Table 1, reproduced from Box and Draper (1965); here Yui ia the

yleld of specien i in experiment u , The system is modelled by the differ-

ential equations

;
1
{\‘" if;-];- - -k !
% , ac 11
" as,
T R R PP
af

3
a "k

which have the solution
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£, = expl=k, t)

£2 " [exp(-kl t) - exp(-k2 t)]kl/(k2 - kl)

f3 . . fl - 12

under the indicated initial conditions. As noted by Box and Draper, it is
natural to xegard the parameters ei = 1ln ki as uwiformly distributed a priori.

There are three responseas Y,y Per experiment, Only twe would be linearly
independent if the yields were mass-balanced (i.e., if the yields in each row

added up to unity). The data in Table 2 are clearly not mazs-balanced, so we use

all three columns of responses.

The repli - ates in Table 2 allow preliminary estimation of the parameters

, by the relation

o
ij n

) .

8 W e
i3 2nR rgl

Here b and yéi are the observations of response i in the first and

(Ypq = ¥py) Wy = ¥py

second testes of replicate pair =r , and no is the number of auch pairs.

This procedure gives

0,00102 =-0.00128 0,00025
{sij} = {=0,00128 0.00351 0,00024
0.00025 0.60024  0.00101

as a preliminary expectation estimate of ¢ . This is a well-conditioned
matrix, so our choice m = 3 was correct,

The parameter vector ? for the present example couslsts of 61, 62,
and the six elements on and below the diagonal of o . To test the conver=-
gence of the estimation from a poor initial guess, the calculation was started
from the initial valus shown in Table 3. Convergence was obtained in eight

iterations, to the point estimates and 25 percent confidence intervals given

there.
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A second calculation was made with the same initial values, but with
second~order O-derivatives rnaglected., Convergence was obtained to the same
point esitimates in nine iterations. The confidence intervals differed
glightly, as shown in Table 3,

A third calculation was made by minimizing the dgterminant !v(g)l. Box
and Draper (1965) did this by a search procedure; we Q‘ad the modified Newton
algorithm of Stewart and Sgrensen (1976), but neglected the second-order 6~
derivatives »f the functions fui(g) . Convergence was obtained in seven

ite.ations, to the same point estimates § The point estimates for the

y -
uij , compute?d from Equation (21), also agrvucd exactly with the two preceding
solutions. The one-parameter confidence intervals (computed in this case only
for 91 aad 62) are wider than bafore, and are considered more accurate
gince in this case the °1j have been integrated out exactly (Box and'Draper,
1965).
EXAMPLE 2, Kinetics of a Five-Component System

Fuguitt and Hawkins (1945, 1947) did extensive exporiments on the liquid-

phase thermal reactions of aw=pinene and its dcaomPOILtion produccu. The

following products, in order of boiling point, were identified,

A. o~Pinene cloH16
B, a - and B~Pyronene ClOH16
C. Dipentene c10H16
D, allo-Ocimena c10"16
E., Dimer C2OH32

The reaction conditions and yields are reported in Table 4,
We have normalized the yields to obtain exact mass balances; this makes
the yields linearly dependent, and accordingly we have omitted species D .

The remaining species are grouped as cumulative distillation fractions:
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R

A, A+B, A+B+C, and E, Each of thesc responses represents essentially the total
N ? mass fraction distilling above or below a particular temperature, The yields
‘% : of B originally reported 1n.tants 1=-15 have been daleted, since they were P
interpolated values rather than observations (Fuguitt and Hawkins, 1947; Box
, ' and co=-workers, 1973).

There are numerous gaps in the data, o~Pinene (A) was reported in experi-

& | ments l~16, but was considered negligible in the remaining experiments, Pyronsenes

i ' (3) were reported only in experiments 16-31) tnhey proved difficult to isolate
except at small concentrations of a=pinene., Only the dimer fraction (E) was ‘ﬁ

t
3 ; reported in the experiments with allo-ocimena (D) or dimer (E) as foed. The ?
\ I

gimplifisd reaction scheme proposed by Fuguitt and Hawkins (1947) implies that
N o-pinane (A) and dipentene (C) would not ba formed in the latter experimants,
but that the other three species would be prerent,

The first eight experiments were used for parameter estimation according

to Equation (17) with m = 3 by Box and co-workers (1973), and by the present

) L

ki i authors (1976), The full 41 experiments could not be so analyzed because of |

: B thelr irregqular structure; therefore, only rough estimates were obtalnable for

4 { |
.*% : several of the reaction parameters. With Equation (8), on the other hand, all .

41 experiments can be analyzed. l

We postulate the following reactinn scheme, !

~

'1‘ ] D F— B

k3

|
|
I y

7 kg /
o : )
&
.' i k4 k3
ﬁ—,
‘ k_4
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fﬂ . with the following differential equations for the concentrations: i
! ) -bi
¥ ' d¢ i
Al A . - 2
3 at (ky + ko) ¢ = 2kg ¢y 3
4 déy

{j & " katptkydp
B o Tk {
é‘ , a4, ) 1
1 ' ———— - - 44
4 . ae " Kg bt Koy 9p T Ry 0p = 2Ky 0p 2Ky ¢y 1
A 1 [
ki i ad

- "B 2 2

P “ ———— -

i : FE UK YR T kg 9
g} ; Here we have assumaed equal densities for the reaction mixture and all species,

il
ki
Jj ' The $, are molar concentrationa relative to the molar density of pure liquid
RV

“m ' o~pinelie at the reaction temperature. The reasulting initial ¢i .values for the

i : pﬁro reactants are: 1.0 for o-pinene, 1.0 for allo-ocimene, and 0.5 for "
ﬁé dimer, The rate coefficimnts are represented as .rrhenius functions, i
L In (k) om0, = (/T = 1/T) B, &= liu.b g
In (Ky/k_y) = =6,,/T0 + (1/T = /1)) o, f
In (ky/k_g) = =6;,/Ty + (1/T = 1/2.) 0., .

values in min'l, T in Kelvins, and a base temperaturs T, of

f : with ki

j : 478,5 X,

-f The data and parameters were paired to check the feamibility of the

o | estimation., This indicated a sufficient amount of data for estimation of all
3 parameters except Opp ° However, the replicate comparisons (u = 18-19,20-21,
. . 22-23,24-25) involving yuz all give duplication of yu3; furthermore each of
these comparisons gives a duplication of either Yy2 ©F Y4 with these

results, we find that neither Oaq nor %42 can be estimated; inileed, an

attempt to estimate them was terminated by the linear independence test
described above. Thereafter, Opp0 O3g¢ and Uqp Were all fixed at zero, and

the remaining parameters were estimated hy minimization of ¢ ,
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t Initial values of the @&=-parameters were chosen from the results of

Fuguitt and Hawkins (1945, 1947), Box and co-workoxrs (1973), and the present

authors (1976), 1Initial variance estimates °ii were calculated from repli-
cate data avallable in Table 4, and zeros were inserted initialiy as covariances.
The model was integrated, for each experiment, by the method of Guertin

et al (1977) with 6 mesh points. Tha coefficients in Equation (9) were com-

puted as described in the Appendix, with first-order sensitivities a¢u1/aek
computed by the method of Stewart and Sgrensen (1976),

7 A first minimization, with roaction 5 omitted, converged within 20 itera-
‘tions. This gave § = 41,08 with paramster estimatas as shown in Table 5.
The confidence intervals show the 6's to be estimated quite precisely. The i
°ij are estimated lass precisely, as anticipated from the limited number of
data on saveral combinations of responses, Tha deviations of the data from
the fitted model are shown in Table 6, lﬁ

A sacond minimization of S was done with the full 5=-reaction model.
This calculation converged to a very flat minimum at § = 34.09, with param=-

eter estimates as shown in Table 5. The deviations of the data from this

o e e b S

Eitted model axe almo shown in Table 6.

The Y-reaction modal is better able to describe the polymer ylelds from

SUFLE S By

o~pinene at short times, as can be seen in Table 6. We can also test the

significance of the added parametexr 95 by use of the confidence intervals,

Table 5 gives 65

limits (1 £ 0.698) exp(-11,945) for k, with the alternate prior p(ks) = c,

= =-11,945 + 0,698, hased on Equation (14); this implies the ;

Hence, the 95% confidence interval for k5 dces not include zero,

on the other hand, Equationa (9) and (13) give the following approximate

expresaion for the 95% confidence regilon of the 20 fitted parameters of the

]
|
S5-raaction model: !%
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o
Lo
; : :
: §(y) - 34,09 < x§o<0.05) - 31.41. [
E All ¢ values such that 8(y) < 65.50 lie within this estimated 95% joint _
l ~ -~ . '»‘{r
% confidence region., By this critexion, the nodel with ks = 0 is acceptable. %
‘a4
! Howaver, as indicated earlier, Equation (14) is more reliable than (13), From 3
i % this, and a study of the residuals, we concluda that the S~reaction model ia f#
% E to be preferxed. i
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APPENDIX: DERIVATIVES OF S ,

The matrices g, are real and symmetric; furthexmore, & is defined only

when these matrices are positive definite, The following derivative relations

then hold:
3 1n |o |
.U 13
TR 2 -

By (2 = 83400, Jsd (A1)
ij

30
Y. (o - ik 23 40 k3

T 3 (2= 8 )Mo, 0" + 0" 0] L <k, (a2)

The relations for second derivatives follow by combination of (Al) and (A2).
3% 1n |o |
m&

ik %] 18 ki
mnj(2 =8, )(2=6 )" 0" +0" a7 jgi, 4 <k
auukzaduij ij kK& ""u Tu u u
(a3)
320}
(2 =8 )26 )
acuataoukz k& st
is _tk it sk, 43 ik , 8 t§ it »j
Hoy oy + 0, 0,0 0, +o (o5 o +0." c") {
is _tR it 8, kj i , ks _tj kt 8j
* (o o, 0, 0.) 0+, (ou o, *+9, o,]
<k, t<B. (Ad)
As indicated earlier, if respohse h is absent from experiment u , the

elements °uhj and Oujh are replaced by the constant dummy values Ghj .
Note also that the symmetxy of % has bean used to express these deriva-

tives in_terms of elementa on and below the diagonal.

The derivatives required for Equation (9) are obtained as follows:

38 \ iy 3
“defr— = =) 7V (2.8, 000 2= (e, c.,) (R5)
aer u i 9<t i3 u aer uli "uj
2 2
3°8 iy 3
} m————— Z Z 32 - 6 )od e (¢ e ) (A6)
aeraev E {34 13" "u aeraev ul "uj
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ij k

§ ) PR N T ‘ (A7) i
' 5

aeraakz uiga 43" do Xl aer uli uj %
g ‘ 3 In |g, | b

u-l st b

a3 [

~ 2 =28 —— 8 44

L E jgl P T e "o !

2 ¥

2 [+4 3" 1ln IU l ; p
stk k& o 2%ustduke ;

] Utj .;

+ (2 = ¢.)) (n9) ¥
) 9 .

€4 €
{4 ul “uy

auotaoukz

Equations (a6), (A7), and (A9) evaluated at 8, and o, provide the ccef- 1
ficient mat;ix A of the normal equations. Equations (pn5) and (A8) give the
right-hand column vector. ;‘

' The residuals €t and euj are expressed as functions of g by use N

of Equation (1), The 6-derivative in Bquation (A6) is expanded to givae:

a2 " - Buui aeuj . Buuj aeui ﬁ:
ae ae ui "uj 98, ﬁev aer 89v \:
2 2
9 € 3 e ]
i, Ul (A10) 1
ui a6 39 uj aeraev

Tha second-durivative terms are unimportant if the data are well fitted;

compare Solutions 1 and 2 in Table 3,

—

If the experiments have different weights w, as in Table 4, then

£ and its derivatives should be multiplied by v, throughout the

ul uj

development, As usual, the matrix o is definod for experiments of wunit

weight .
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Table 1, Examples of Data Structuras with m « 4 and n = 8

la, Rectangular ib, Block=ractangular lo. Irregular

o Yy Yy Yy3 Yyg Yul Yuz Yu3 Yue Yul ¥Yyu2 Yu3 Yue

1 + o+ o+ 4 +

2 + o+ o+ o+ +

3 + o+ 4+ +

4 + o+ o+« + 4+ +

5 + o+ o+ o+ + o+ * +

g T + 4+ 2 %
7 o+ o+ 4 + 4+ + o+ + 1
8 + 4+ o+ + o+ o+

f
Table 2. Data for Example 1, from Box and Draper (1873) 1
' 1

tu yul Yyu2 Yy3

0.5 0.959 0.025 0.028

0.5 0.914 0.061, 0.000

1. 0.855 0.152 0.068 |
1. 0.785 0.197 0.096

2. 0.628 0,130 0.090 5
2. 0.617 0.249 0.118

4. 0.480 0.184 0.374

a. 0.423 0.298 0.358

8. 0.166 0.147 0.651

8. 0.205 0.050 0.684 !
16, 0.034 0.000 0.899 :
16. 0.054 0.047 0.991 J

progugr—apry—
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" B
i ﬁ
i \ g!
{ )
) | A
B 0.
i ! Table 3, Parameter Values for Example 1 4
s ! i
2 ﬂ Initial Solution 1 Solution 2 Solution 3 L.
3 i Parameter value Eqs. (8,14)* Eqs. (8,14)* Eqe, (i8,21)*
23 ; 8, -2,3026 -1,572340,0867 -1.57230,0558 -1,572310.0800 1
i i il
i
~\ ' 92 0. =0,7023£0.1374 -0.7023£0.1346 =-0,7023£0.1931 iy
5 oy 0,01 (0.76£0,52) 107> (0.76£0,83) 10™> 0,76 10”° 1
b i %y 0. -(0.5020.63) 10™°  ~(0,50£0.63) 10™>  ~0.50 10"° R
i | %, 0.01 (1.861,28) 107>  (1.86£1.29) 107>  1.86 10”2 E
4 | oq 0. (0.3210,41) 107 (0.32:0.41) 10" 0,32 10”3 :
i | o, 0. (0.40£0,62) 1070 (0.40%0.62) 107> 0.40 10" ]
i | 04y 0.01 (0.77£0,54) 10~ (0.77:0.54) 10> 9,77 10°3 7
'l ' -"‘
3 " 1
All intervals are S5V highest postarior density regions. 1In Solution 3, the .
‘7‘ . intorvals are¢ computed from the normal aquations with "residual mean square" .
: g |v(8) |/(n=2) and n~2 = 10 residual degrees of freedom. In Solution 1, the f"‘
' [ second-derivative terms of Equation (Al0) are included. ' _'-Z
A i .l
§ | §
; 1
i !
[': i
f}..: lj
| ,
s j
i i .
] ’f s
& ¢ 1
‘ i i
¥ g
i
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*
Replicate of the precedirg test,
]

K=
} i
5 Table 4, Data for Exampla 2, from Fugulttand Hawkins (1945,1947) {f
‘i Normalized yields, weight percent
| 2 3
: Efft. Feed T, C, t“,min W Ya1 Yu2 Yu3 Yu4 b
: ' (n) (A+B) (A+B+C)  (E) 3
f i
i 1 A 189.5 1230, 1 88.3 nw 96,2 2.2 3
4 2% A 189,5 1230, 1 88,2 Al 95.7 1.3 i
a 3 A 189.5 3060, 2 76,4 el 92,7 2.8 o
E 4 A 189.5 4920, 2 64,8 *ww 88.9 5.8 p -
5 A 189.5 7800, 2 50.3 WLl 84.7 9.3 \
i 6 A 189,5 10680, 2 37,5 o 82.0 12.0 4
x 7 A 189.5 15030, 2 25,9 WL 77.1 17.0 3
g 8, A 189.5 22620, 2 14.0 wan 73.9 21,0 -
i 9 A 204.5 440, 2 86,6 " 95.3 .6 A
; 10 A 204.5 825, 2 75,0 hdy 91.5 1.6 §
11 A 204,5 1200, 2 66.0 wwe 88,8 3.4 3
v 12 A 204,5 1500, 2 59,4 WLl 86.4 5.1 g
g 13 A 204.5 2040, 2 48.9  w 83.0 8.3 y
14 A 204.5 3080, 2 32.8 bl 77.8 13,8
; 15 A 204.5 6060, 2 11.5 wuw 70.4 22,5 #
; 16 A 189,5 36420, 2 4.5 7.4 70,5 25,7 -v
; 17 A 204,5 16020, 2 - 3.1 66,2 28.6 ]
] 18 A 225.0 3000, 1 - 3.0 66,0 28,0 ‘
. 19% A 225.0 3000, 1 - 4.0 6,0 28.0 !
; 20 A 245,0 630, 1 - 4,0 65.0 27.0 b
; 21 A 245.0 630, 1 - 5.0 65.0 27.0 b
| ‘ 22 A 265.0 120, 1 - 7.0 65.0 23,0 B
; 23% A 265.0 120, 1 - 7.0 65,0 24.0 \
| 24 A 285,0 30, 1 - 11.0 66.0 19.0
| 25% A 285,0 30, 1 - 9.0 66,0 19,0 ~
: . 26 D 189,5 1020, 1 - - - 80.0 ,
} 27 D 189.5 3990, 1 - - - 87.3 :
28* D 189,5 3990, L - - - 87.3 x
i 29 D 189.5 6780, 1 - - - 87.5 1
¥ 30 D 189.5 8220, 1 - - - 86.5
i 31 D 189,5 13260. 1 - - - 88,5
. 32 D 189.5 14760, 1 - - - 89,6 |
o 33 D 204.5 3480, 1 - - - 87,5 )
;! 34 D 204.5  5700. 1 - - - 86.8 i
X 35 E 189,5 8880, 1 - - - 91.9 3
¥ 36¥ E 189,5 8880, 1 - - - 92.0 p
' 37 £ 189.5 14340, 1 - - - 89,8 4
i 38 E 189,5 23400, 1 - - - 89,7 P
3w E 189.5 23400, 1 - - - 88.5 .
40 E 204,5 5700, 1 - - - 88,4 b
41 E 204,5 8100, 1 - - - 87,9 1

]
W, is the number of independent tests combined to obtain each obmervation Yoi- A

' 11 ’
b Originally reported but not nbserved; see text. ;

- No value reported, ?.

236

R

4
TR PR LA A TR RN L L T T e ' . X . I ]

e s b s 5,




i
' ’ Table 5. Parametsrs for a-Pinene Conversion jf
| Eltimatu* for Eltimatos. for -
: Parameter 4~Reaction Model 5=Reaction Model
A | N 8,331 : ,024 -8,333 : ,025 1
A 8, -8,898 : ,029 -8.961 t ,054 %;
{i 8, -8,242 t 341 -8,196 * ,325 £§
-ﬁ 8, ~5,389 * ,081 - =5,438 t ,087 Bl
% 0 «11,945 * ,698 %L
;i O 19814, * 428, 19785, + 457, |
1@ 0, 20828, * 474, 20890, + 536, 1
i 0g 17336, & 4079, 17212, £ 4203, 1
53 0g 10321, ¢ 915, 10322, + 918, 3
iﬁ 80 19957, " L
! 8y, 269, : 83, 279, £ B3, 3
2 0, -1976. = 64, -1985, * 63, {
;ﬂ 8,4 -336. * 950, -259, + 958, 1
k. €14 -3873. + 1624, -3781, & 1585, 3
b oy, 696 =+ ,418 784t .492 1
_j 991 .000 " 000 "o ‘;
p Oas 2391 359 .376 t  ,348 :}
; ( 04y .358 1 .412 .426 t .456 ¥
] 9a .000 o .000 o ;
3 O3y J706 * ,426 732 t .444 b
;ﬁ 941 ~.248 t ,344 -.294 + ,354 A
fz %4z .000 o .000 * L
\ Y43 -.504  ,317 ~.493 t  .314
ii 944 744 % ,304 .654 t 282 ?
8 : _
\s 95% highest posterior density intervals calculated from Equation (14), {
3 “Posterior estimates were not obtained for these parameters, '
K | !
3 i
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1
Table 6. Final Residuals aui(é) for Example 2. '
; 4-Reaction Model S5-Reaction Model
! Expt., Cul €an €u3 ud ful a2 €u3 €ud ‘\
i % u (h) (AxR,)  (A+B+C) (E) (A)  (a+B) (A+B+C) (E) g
1 . ¢
i ( 1 1,32 - -.37 2,00 1,22 - ~.26 1.69 i
‘;i ‘ 2 "1.42 - '.87 1.10 —1.32 - "'076 079 ‘n
8 3 .26 - .24 .88 .43 - .43 .45 3
3 4 .28 - -.15 1,10 .45 - .06 .72 x
i 5 .38 - -.04 .22 48 - 12 -.04 ;
‘z‘ 6 "'lols - 070 -osl -1.12 - 078 ".96 lv
i 7 -, 32 - -e26 -.17 ~.43 - -.29 -.18 5
) 8 .66 - .89 =1,06 47 - .74 -.92 b
ﬁ : 9 .88 - .21 +30 1,00 - .35 -,11 '
"‘; ; 10 .10 - -.17 '14 '24 - . 04 -, 38
L 11 W3 - -.07 .16 .45 - .15 -.34 g
3 12 .27 - -.51 .23 .38 - -.29 -,23 .
y 13 -,04 - ~.86 .42 .01 - -, 69 ,08 3
X 14 -1,44 - -1,56 .90 -1,52 - -1.49 .75 1
. - 15 - .47 - -1,47 .63 -.70 - -1,61 .77 i
o ' 16 .60 .78 .98 -.36 .44 .72 .74 -.14 ]
17 - -,12 -.67 .34 - -,07 -.87 .50 9
18 - -,B8L .51 -.48 - -, 76 .38 -, 39 .
19 - .19 .51 -.48 - .24 .38 -.39 i
i 20 - -,89 .29 -,56 - -,88 .22 -,47 ¥
21 - W11 .29 -.56 - .13 .22 -.47 |
22 - -.54 -.31 - 37 - -,58 -.32 -,28 i
23 - -.54 -, 31 .63 - -, 58 -,32 .72 ;
24 - 1.54 .49 -.15 - 1.51 .58 -.20 !
25 - -.46 .49 -.15 - -.49 .58 -.20 ¥
26 - - - 1,12 - - - 1.9% b
27 - - - -.92 - - - -.61 s
28 - - - -.92 - - - -.61 i
29 - - - "1 . 31 - - - "'1 . 16 4
30 - - - -2.37 - - - -2,27 r
31 - - - -.41 - - - -.42 y
32 - - - .90 - - - .86 :
\ a3 - - - .67 - - - .72 ’
34 - - - -.31 - - - -.40 3
35 - - - 1.26 - - - 1.17 {
36 - - - 1.36 - - - 1.27
37 - - - .24 - - - .16
k[:} - - - .91 - - - .80 g
) 39 - - - -.29 - - - -.40 3
f 40 - - - .42 - - - .27 3
§ 41 - - - .51 - - - .35 :
i
! ! |
: ¢
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